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ABSTRACT

The results obtained after comparing several algorithms which use basic methods of signal processing for speech
activity detection of voice or VAD (Voice Activity Detection-VAD), were assessed in order to determine their
effectiveness. The algorithms presented in this article are short-time or spectral energy based endpoint detection
algorithm, the zero crossing rate method, and the higher order differential (High Order Difference, HOD) method.
First, an introduction of the concept of VAD is presented and the need to apply such language algorithms in River
Plate is Spanish. Then a summary of the state of the art techniques and algorithms for detecting voice activity is
shown with evidence and experiments used to implement algorithms with BEPPA corpus (Evaluation Battery for
Patients with Auditive Prostheses, BEPPA — in Spanish).
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RESUMEN

Los resultados obtenidos luego de comparar varios algoritmos que utilizan métodos basicos de procesamiento
de sefales para la deteccion de actividad de voz (VAD, por el término en inglés) se evaluaron para determinar su
efectividad. Los algoritmos presentados en este articulo son de corta duracion o algoritmos de deteccion de punto
final a base de energia espectral, el método de la tasa de cero cruce y el método de diferenciales de orden mayor
(HOD, por el término en inglés). Primero, se presenta una introduccion del concepto VAD y de la necesidad de
aplicar dichos algoritmos de lenguaje al espafiol del Rio de la Plata. Luego un resumen de las técnicas del estado
del arte y algoritmos para detectar la actividad de voz se muestra con la evidencia y los experimentos utilizados
para implementar algoritmos con Bateria de Evaluacion para Pacientes con Protesis Auditiva (BEPPA) corpus.

Palabras claves: deteccion de actividad de voz, BEPPA, energia de corta duracion, Tasa Cero Cruz, diferenciales
de orden mayor.
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INTRODUCTION

Currently, analysis, representation and modeling of
speech signals is one of the most studied topics in bio-
medical engineering with applications ranging from
automatic speech recognition to brain-computer inter-
faces (Brain Computer Interface - BCI). One of the
key steps in these applications is the detection of acti-
vity (Voice Activity Detection VAD), which is neces-
sary to reduce noise and/or classify the voice. To date
each of the methods developed in current research in
VAD has been evaluated using English databases with
some exceptions in the Spanish and Chinese langua-
ges. Furthermore, the English language has phonetic
and acoustic differences when compared to River
Plate Spanish and therefore these algorithms may
have increased rates of misclassification. Therefore,
it is necessary to evaluate the effectiveness of these
techniques when used for River Plate Spanish using
the battery developed at the Faculty of Engineering of
the National University of Entre Rios known as BE-
PPA (Evaluation Battery for Patients with Auditive
Prostheses, BEPPA — in spanish). In communication,
speech can be characterized as a discontinuous me-
dium due to breaks, which are a unique feature com-
pared to other multimedia signals such as video, au-
dio and data. The regions where voice information is
classified are active voice (voiced and unvoiced) and
pauses which are called silent or inactive regions'.

2. STATE OF THE ART

The algorithms developed to classify the voiced
speech signals (voice), the unvoiced speech (unvoi-
ced) signals and the silent (silence) regions are tech-
niques known as voice activity detection (Voice Acti-
vity Detection VAD). The first time when VAD was
first defined or talked about was in the early 1960's
with the speech interpolation system (Time Assign-
ment Speech Interpolation, TASI) (1,2). A first appro-
ach to the problem of detecting voice activity was the
location of the endpoint, so, in (3) an algorithm is pro-
posed to solve this problem using two characteristics
of speech signals, the energy and zero-crossing rate.
Other algorithms used are those of linear prediction
coefficients (Linear Prediction Coding, LPC) (4) and
of frequency of the signal using the least squares esti-
mator (Least-Square Estimator Periodicity, LPSE) (5).
Tucker in (6) proposes using an LPSE VAD to detect
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speech. This technique only worked for a SNR above
0 dB, but showed better performance than the auto-
correlation estimator SNR 5dB below. On the other
hand in (7), the proposed VAD detects the intervals
where the voice appears using the cepstral analysis.
Then the researcher designed a VAD in global sys-
tems for mobile communications (Global System for
Mobile Communications, GSM) cited in (8), which
exhibits good performance under stationary noise en-
vironments. Soon after, a low complexity robust al-
gorithm based on measuring the energy spectrum of
the voice (9) was developed, which was adopted as
part of Annex B to Recommendation G.729B of the
International Telecommunication Union (Internatio-
nal Telecommunication Union, ITU) and in 1996 for
a standardized speech coding scheme (10). Moreover,
in (11) a VAD algorithm based on wavelet transform
(Wavelet Transform, WT) using its flexibility in tem-
poral-frequency resolution to calculate the parameters
of the VAD decision is proposed. A new technique
capable of working under very low SNR (less than
10dB) is proposed in (12). One of its main advantages
lies in the insensitivity to changes in noise levels. In
(13) an algorithm is proposed that combines methods
as geometrically adaptive energy thresholds (Thres-
hold Energy Adaptive Geometrically, GAET), and the
measuring of the periodicity LPSE and zero crossing
rate of the signal is proposed. This method presents
more robust information than previous VAD’s, becau-
se it is working in conditions with SNR between 10dB
to -10dB and under and is not sensitive to changes in
noise levels. At present, algorithms are fused to achie-
ve better performance and better classifications, such
as described in (14), where the speech signal is de-
composed into 4 sub-bands using the discrete wavelet
transform (Discrete Wavelet Transform, DWT) and
the Teager energy operator (Teager Energy Opera-
tion, TEO) is applied to each sub-band DWT coeffi-
cients. Results show that the algorithm is not affected
by variations in noise levels, overcoming the method
implemented with the transformed perceptual wavelet
packet (Perceptual Wavelet Packet Transform PWPT)
proposed in (15).

3. IMPLEMENTATION OF ALGORITHMS

According to its own properties and production mo-
dels, the voice signal can assume different characte-
ristics to discriminate speech and silent periods. Some
of the most widely used assumptions in most algo-
rithm voice activity detections are listed below (16):
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* The ambient noise is additive to the speech signal.
e The segment of the speech signal has a higher
energy value than the ambient noise segment.
*  Speech is stationary for short periods of time, for
example T <40ms.

» The voice is not stationary over longer periods,
eg T>0; 5Ss.

* Ambient noise is stationary for much longer pe-
riods, eg T> 2s.

e The voice has more regular noise components
than noise.

Using these hypotheses, among others, voice activity

detection algorithms were proposed and implemented

to discriminate speech and silent periods in the time

domain.

A. Short-time Energy
As mentioned above, one of the considerations of the
speech signal is that it’s considered stationary for short
periods of time, ie less than 40ms, being stationary, it
is assumed that the same acoustic characteristics are
present in the sample window. Now, a segment of the
speech signal is defined as the product of a shifted
window and the sequence of values of the speech sig-
nal, which are (17):

F  [n]=s[n]w[m-n] (D)
Furthermore, short time energy (Short Time Energy,
STE) can be defined as:

3
E, =/ Glnlwiemy @
m=—3

To calculate the energy of real signals, adjust the for-
mula to the intervals where the equation is no longer
zero. The speech signal s [n] =s_e€ R (not all zero) for
n=1,2,..,Nandis 0 for n <1 A n> N, we also have
that w [m] =w_ € R (not all zero) form=1,2,.., M
and is 0 for all other m; i.e. the energy of short time
to real signals is:

£, =/ slmlutemly  ©)

m=n—m

where M is the length of the w window (18).

B. Zero Cross Rate.

The zero crossing rate (ZCR, Zero Cross Rate) is one
of the basic acoustic features that can easily calcula-
te and implement the VAD's. ZCR is defined as the
weighted average of the number of times the speech
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signal sign changes within a segment of the speech
signal (18). The representation of the operator in
terms of a linear filter is:

Z (= 20,5 sgnis[ml}-sgnislm-11} wln-m] (4)

m=n—M+1

where

1s[m]$ 0,
—1s[m]10

In general, the ZCR of clunks (not voiced speech) and
ambient noise is greater than for voiced sounds (voi-
ced speech). The ZCR is often used in combination
with the STE for endpoint detection (18). In particu-
lar, the ZCR 1is used to detect the start and end posi-
tions of unvoiced sounds.

sgnis(m]}= { )

C. High order difference.

The hardest part in the VAD is to distinguish unvoiced
sounds of silence (18). One way to achieve this is to
use higher order differential (HOD, High Order Di-
fference) voice as a characteristic in the time domain.
This method was discussed in (19) and no literatu-
re used before or after the higher order differential is
used to find the endpoint of the voice activity, since
there are no scientific articles found regarding this to-
pic. The idea of the author is applied to a differential
signal segment previously multiplied by the window
function of the speech signal and adding their absolu-
te values, ie:

”‘ d;s[m]w[n—m];

HOD_ (n)= T

(6)

m=n—M+1
The HOD used to identify unvoiced sounds is easier
than the ZCR(19).

4. TESTS AND EXPERIMENTS

The tests were implemented using the BEPPA corpus,
which was designed to study River Plate Spanish
adult audiometric testing and hearing aid selection
and performance (20). Recordings of 3 male voices
and 3 female speakers between 18 and 45 years, na-
tives of Argentina, belonging to the region of Rio de
la Plata were performed. BEPPA has a sampling fre-
quency of 48 kHz and 16 bit resolution (21).

It was also necessary to segment and perform a sub-
sampling of the BEPPA corpus, it was then implemen-
ted with a MATLAB algorithm that converts data cho-
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sen from 48 kHz to 16 kHz. In the BEPPA corpus the
following experimental sentences were implemented
and subsampled(in Spanish) in order to perform the
signal analysis experiments:

*  Dawn was clouded but it cleared up in the after-
noon.

e The pain was very great but short lived.

e Itistoo heavy, no?

e The highway was empty but we still arrived late.

e The meat is raw and I do not like that way.

e The children fell asleep, did you realize this?

e What a terrible problem, don’t you think?

* Do you remember the number or do [ have to
check?

e They are all on vacation.

* Did you take the remedy or did you forget?

The first implemented VAD uses the STE to locate the
beginning and end of the speech signal. The method
uses two steps to calculate the detection thresholds:

1. Uses a higher threshold 7 to determine the start of
the final index.

2. Expands the boundaries to reach the lower thres-
hold 7,

Figure 1 illustrates the algorithm used.
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Figure.1 Location thresholds for VAD employing short-
term energy (3).

This method was proposed by (3) one of the most
used in the literature for its versatility and low com-
putational cost.

After testing with the decision using only the power

of short time, an algorithm that combines the zero

crossing rate and energy of short-time signal was im-

plemented. The VAD detection algorithm performs

the following steps:

1. Using a high threshold 7, to determine the start
and end point energy.

2. Extend the limits to reach the lower threshold z,.

3. Extend the limits further to reach the threshold of
ZCR .
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The method is illustrated in Figure 2 and was first pro-
posed by (3).

£ (m)
+

1
]
1
1
i
| e
]
e e e Window end-imne,
1

Ny m (nom-sec)

I

|

l

| Lero

ol ;f‘_ - - crossings
M L

“f‘ Window end-time.
Ny I [ BOM-SeC )

Figure. 2 VAD Algorithm with STE and ZCR (3).

It can be noticed that the ZCR improves detection
of voice activity. Finally, HOD was used for the de-
tection of the segments that are silent or of unvoiced
speech. In order to be implemented, the algorithm
must perform the following steps:

1. Calculate the energy and the sum of the absolute
values of the differentials of order n.
2. Select a weighting factor (weight) w from [0,1] to
calculate the new curve:
VH =w X energy + (1-w)xHOD  (7)

3. Finding a relation p to calculate the threshold 7 VH
and determine the final index of the sample. threshold
equals:

VH,, VH,,-VH,)p ®)
As can be seen, this method depends on three para-
meters to determine n, w, p. Typical values of these
parameters are: n=4, w =15 and p =0; 125, according
to (19), but nevertheless vary according to the dataset
(voice).

5. RESULTS

The results obtained using the short-time power are
shown in Figure 3.

141



Revista de Investigaciones - Universidad del Quindio

Clearly, it can be observed that the threshold values
are critical when locating the start and endpoints of
the speech signal. When the thresholds of minimum
and maximum energy were changed, erroneous detec-
tions in the algorithm were obtained. Many problems
also presented themselves when trying to detect un-
voiced or silent speech. The most suitable value for
the threshold found in the analysis, was 0.03 for the
BEPPA battery, the index was multiplied to the maxi-
mum value of the energy of the speech signal.

When implementing the algorithm that combines the
STE and ZCR, the improvement was evident in the
detection of unvoiced speech segments, in Figure 4
the results are shown.
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Figure. 4 VAD with STE and ZCR.
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Once again finding the value of the threshold detec-
tion is the main issue, although improvement in detec-
tion is evident. In the method, the initial value of the
word is calculated using the threshold 1zc increasing
the size of the detection limit and thus improving effi-
ciency of the VAD algorithm, first suggested in (3).
Finally, we implement the algorithm using HOD for
detection. The results obtained with this algorithm on
the BEPPA battery, shows improved efficiency when
the detection of unvoiced speech segment (TDD) as
compared to its predecessor, when the ZCR is imple-
mented, and in which case detection of words takes
both segments into account, ie the voiced and unvoi-
ced segments and ignoring the silent segments. In Fi-
gure 5, the above results are shown.
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Figure. 5 VAD with STE and HOD.

The differences can still be observed and the pre-
sented thresholds used in each algorithm. The error
matrix was used for the analysis of the implemented
VAD ratings. To obtain the error matrix the algorithm
was used with 10 sentences and for each the BEPPA
battery was used, ie it had 65 words and about 40
rests. Table 1 shows the low efficiency of the algo-
rithms that use only short-term energy to arrive at a
decision, therefore the algorithm implemented in BE-
PPA is demonstrated to show a sensitivity of 66.2%.
Since no false positive errors were detected specifici-
ty is 100%, and this percentage supports the results of
(3) and (22), but shows a problem inherent in the use
of the same thresholds and the corresponding classifi-
cation decision. The error rate presented by this algo-
rithm was 21.2%.

Table 1. Error matrix for the VAD with STE.

Algorithm VADSTE Speech Silence
False Positives 43 22
False Negatives 0 39

The results of the algorithm used with the STE and
ZCR are shown in Table 2, where we can observe
a slight improvement, but not a substantial change
when trying to obtain a more robust algorithm. The
sensitivity in this case was 75.4%. Again, the speci-
ficity is 100% effective in showing the readings with
low background noise. The error rate also shows an
improvement in its results to be 15.5%.

Table 2. Error matrix for the VAD with STE-ZRC

Algorithm VADSTEZRC Speech Silence
False Positives 49 16
False Negatives 0 38
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Finally, Table 3 illustrates the results obtained by
implementing the HOD using VAD detection, which
shows a sensitivity of 96.9%. Demonstrating a mar-
ked improvement in the decision, this is due to the
ability of the algorithm to distinguish the unvoiced
speech segments. The specificity is 100% and the

Evaluation and comparison using activity signals of speech methods. Vrangel. et al.

ral techniques for finding the most efficient threshold
and, although in (16) different methods are described
for VAD decision either by statistical methods, with
distances and decision making by heuristics because,
they were not implemented for River Plate Spanish.
These results suggest that VAD cannot have universal

error rate is of 2.9%. thresholds, i.e. these cannot be implemented for any
language or languages. This leads us to suggest that

Table 3. Confusion matrix for the VAD with HOD when the VAD threshold depends on the energy, you

Algorithm VADHOD Speech Silence should implement robust decision methods for selec-
False Positives 63 > ting optimal thresholds or using machine-learning ba-
False Negatives 0 40 sed on statistical properties. The contribution of this

research is that we can say that it is possible to use a
single algorithm for different languages but it must
have the ability to change the threshold adapted to the
language used. Finally, it is suggested to implement
algorithms comparisons with signals below freezing
relations noise, that is, SNR < - 5dB.

6. CONCLUSIONS

Due to problems encountered in empirically select the
best threshold through trial and error, and the absence
of bibliographic references that allow to apply seve-
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