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RESUMEN

En un canal multiusuario (1) donde las señales son corrompidas por ruído blanco aditivo gaussiano (AWGN) 
e interferencia de acceso múltiple (MAI), un acceso múltiple por división de código (CDMA) receptor de-
tecta los símbolos, o bits, y las estimaciones de los parámetros: un la transformada wavelet se aplica a los 
símbolos recibidos, que han sido codificados previamente en el transmisor por un código especial, el resul-
tado final es una reducción del ruido (eliminación de ruido), lo que significa la mejora del rendimiento y de 
la tasa de error de bit del sistema .

Palabras claves: Wavelets, modulacion, eliminación de ruido

ABSTRACT

In a multiuser channel (1) where signals are corrupted by Additive White Gaussian Noise (AWGN) and 
Multiple Access Interference (MAI), a code-division multiple access (CDMA) receiver detects the symbols, 
or bits, and the parameters estimates: a wavelet transform is applied to the received symbols, which have 
been previously coded at the transmitter by a special code; the final result is a reduction of the noise (denoi-
sing), which means improvement of the performance and of the bit error rate of the system.
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INTRODUCTION

The Bit Error Rate - BER - of any transmission system 
is a decreasing function of the Signal to Noise Ratio - 
SNR. So, in order to improve the BER, it is necessary 
to increase the SNR. However, practical systems are 
power limited, and the signal power can be increased 
only up to a certain value. On the other hand, the noi-
se arises from physical reasons and cannot be reduced 
to any desired value. To overcome such limitations, 
different processing techniques are employed both at 
the transmission side and at reception side as well to 
improve the system’s performance. One of the possible 
techniques to reduce the noise at the receiving side em-
ploys the wavelet transform. The wavelet transform is a 
representation in the plane time-frequency. Any signal 
can be completed recovered by means of the wavelet 
coefficients and the inverse wavelet transform (2, 3).

An approximation to a typical real signal, in a commu-
nications system, can be obtained using a subset of the 
wavelet coefficients, which form a basis for the mathe-
matical set, or space, under consideration. If, for exam-
ple, the received signal has a reasonable SNR but not 
good enough to achieve the desired SNR, the elimina-
tion of the wavelet coefficients that are less than a gi-
ven threshold may result in an improved SNR because 
the small coefficients carry more information about the 
noise than the desired signal. On the other hand, the-
re are certain signals that have the energy concentra-
ted in a part of the spectrum. So, if only the wavelet 
coefficients corresponding to this part of the spectrum 
are used, the SNR also improves. However, in general, 
in digital transmission systems none of aforementioned 
conditions prevails.

MATERIALS AND METHODS 

Consider the information sequence represented by 
{b(m)}, in which for the case of Binary Phase Shift Ke-
ying - BPSK modulation, the value of each information 
bit can be  ± 1. Let’s also consider the transmission of 
a data block of length N. Then {b(m)} = {b(1), b(2), ..., 
b(N)}. The wavelet spectrum of such signals, unless for 
some special cases, is similar to the wavelet spectrum 
of white noise, i.e., the energy is uniformly spread along 
the whole frequency range. Taking into account also 
the fact that in real systems the SNR at the receiving 
side can be very small, even less than 1, then none of 
the appropriate conditions for the elimination of some 
wavelet coefficients from the signal’s representation is 

present.
The Continuous Wavelet Transform - CWT - of a signal 
x(t) consists of a set                                                  , in 
which

-	 τ is the time localization parameter;
-	    is the real set;
-	 s represents scale; and
-	 ψ denotes a wavelet function,
of wavelet coefficients on the continuous time-scale 
plane (also known as time-frequency plane) given by 

Denotes a dilated and shifted version of “mother” wave-
let            .

The Discrete Wavelet Transform - DWT -  coefficients 
for continuous time signals can be directly from (4)

in which the indices j and k are called scale and locali-
zation, respectively, it does not involve any discrete-ti-
me signal, but the continuous-time signal x(t). Equation 
[2] can also be used with discrete-time signals.

Consider now that the original signal is modulated or 
spread before transmission resulting in a new signal gi-
ven by

In which ε is the signal energy per bit, T is the bit in-
terval and s(t) is a function of limited support, less or 
equal to T.
In this article we show that if                                then the 
only wavelet coefficients of g(t) that are different from 
zero are those of scale j. This means that the energy of 
the new signal is completely concentrated in only one 
scale. So, if g(t) is used to transmit the information, at 
the receiving side, we evaluate its wavelet transform, 
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and we suppress all coefficients for the scales different 
from j. These coefficients would be carrying only noise.
The recovered signal from the remaining coefficient has 
its SNR improved by 3 dB.
This technique has been developed to be used in the 
transmission of CDMA signals of cellular systems em-
ploying multiuser detection techniques. It is also useful 
to improve the signal to interference - SNI - ratio

Equation [2] shows that the DWT for continuous time 
signals corresponds to a critically sampled version of 
the CWT defined by (1) in the dyadic scales s= 2j, j=..., 
-1, 0, 1, 2,..., in which the instants of time in the dyadic 
scale s=2j are separated by multiples 2j. The function 	
      of Equation [2] must be defined from a multireso-
lution analysis - MRA of the signal x(t). Notice that the 
continuous time MRA theory is similar to that of discre-
te time.
Figure (1) shows the critical sampling of the time-scale 
plane by means of the CWT parameters (s= 2j e τ = 2jk) 
discretization.

A MRA is by definition a sequence of closed subspaces 
{VJ}J∈Z  de L2 (     ) (5) such that:
1)                                                        ;

2)                          
 
3)                              ;

4)                                                  (in which t denotes 
time and x(t) is an energy signal);

5) There is a function                                      in Vj, ca-
lled scale function, such that the set {ϕj,k ,K ∈ Z} is an 
orthonormal basis of Vj , with ϕj,k(t)= 2-j/2 ɸ0(2

-j t-k),   J, 
K ∈Z .
The subspace Vj is known as the approximation space, 
associated to the time scale sj=2j (assuming that V0 is 

the approximation space with unit scale.)
If the x(t) projection on Vj is represented by the scale 
coefficients

Then the properties 1 and 3 assume that

Property 4 implies that the subspace Vj is a scaled ver-
sion of subspace V0 (multiresolution).
The orthonormal basis mentioned in property 5 is obtai-
ned by time shifting the low-pass function ϕj .

As Vj+1 ⊂ Vj , we have Sj+1(t) is a coarser approximation 
of x(t) than Sj(t).
This fact illustrates the MRA’s fundamental idea, that 
consists of examining the loss of information when one 
goes from Sj(t) to Sj+1(t):

Δx j+1 (called the detail of xj (t) ) belongs to the subspace  
Wj+1, named detail space that is associated to the fluc-
tuations (or variations) of the signal in the more refined 
time scale   and that corresponds to the orthogonal com-
plement of Vj+1 in Vj .
The MRA shows that the detail signals Δxj+1(t)= Dj+1 (t)
may be directly obtained by successive projections of 
the original signal x(t) on wavelet subspaces Wj.
Moreover, the MRA theory shows that it exists a 
function Ѱ0(t), called “mother wavelet”, that is obtained 
from ϕ0(t), and from which a scaled by j, and shifted by 
k, version can be obtained as Ѱj,k (t)= 2-j/2ϕ0(2

-jt-k), k ∈ 
Z  is an orthonormal basis of Wj.
The detail Dj+1 is obtained from the equation

The inner-product

denotes the wavelet coefficient associated to scale j+1 
and discrete time k and		      is a family of wave-
let functions that generates the subspace Wj+1 , orthogo-
nal to subspace			      , i.e.,

0ψ

Figure 1. Critical sampling of the time-scale plane by means 
of the CWT (s= 2j e τ = 2jk) discretization
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Therefore, the detail signal Dj+1 belongs to the comple-
mentary subspace Wj+1 of Vj , because

That is, Vj is given by the direct addition of Vj+1 and 
Wj+1 and this means that any element in Vj may be de-
termined from the addition of two orthogonal elements 
belonging to Vj+1 and Wj+1 (6) Iterating [9], we have

How the noise can be reduced by means of a wavelet 
modulation
As previously commented in the “Summary”, one of the 
possible techniques to reduce the noise at the receiving 
side of a communications system employs the wavelet 
transform (7). The typical noise-reduction method ba-
sed on wavelet transform is called denoising, which is 
used to reduce noise in images for instance. Comparing 
this typical denoising to the method presented here, the 
main difference to be noted is that here one has access 
to the source of the signal, so it is possible to process 
the signal conveniently, in a way that when it arrives at 
the receiver, that initial processing of the transmission 
can be adequately explored, so this new denoising or 
modulation can be made more effectively. As shown in 
Section II, the wavelet transform is a representation in 
the plane time-frequency. Any signal can be completed 
recovered by means of the wavelet coefficients and the 
inverse wavelet transform. An approximation of the sig-
nal can be obtained using a subset of the wavelet coeffi-
cients. 

If, for example, the received signal has a reasonable 
SNR but not good enough to achieve the desired BER, 
the elimination of the wavelet coefficients that are less 
than a given threshold may result in an improved SNR 
because the small coefficients carry more information 
about the noise than the desired signal. On the other 
hand, there are certain signals that have the energy 
concentrated in a part of the spectrum. So, if only the 
wavelet coefficients corresponding to this part of the 
spectrum are used, the SNR also improves. However, in 
general, in digital transmission systems, none of above-
mentioned conditions prevails.

.,,0, ,1,1 pnpjnj 


 [8]

11 
 jjj WVV . [9]

.21 
 jjj WWV [10]

RESULTS AND DISCUSSION 

In this section we will show by means of simulation 
results that the conclusions concerning the de-noising 
can be verified. The simulations were performed using 
the software known as “R” (8).
We started by generating an unit power random se-
quence { b(m)}={b(1), b(2),..., b(N)} where N = 
256. In Fig. 2, the top plot is the generated sequen-
ce. The remaining plots are the wavelet coefficients 
for different scales from  j = 1 up to j = 4. The hori-
zontal axis is time. The actual values of the wavelet 
coefficients are not important for the purposes of 
this article; the objective here is to realize that in all 
scales they are different from zero. This is also true 
for the coefficients that are not shown in the figure.

Fig. 3 shows the wavelet spectrum corresponding 
to the sequence presented in Fig. 2. The wavelet 
variance on the vertical axis is a measure of the 
energy of the signal, and it is obtained by squaring 
the wavelet coefficients and summing them up; on 
the horizontal each number corresponds to the sca-
les of the coefficients. It can be seen that for all 
practical purposes, it can be considered flat as its 
variation is below 1 dB. This is a spectrum of white 
noise, and the signal does not have any interesting 
characteristic to be exploited by any denoising te-
chnique.

Figure 2. A 256-point random sequence and its associated 
wavelet coefficients up to scale j= 4  .

Wavelet transform applied to multiuser communications. Alves y Amazonas.

Rev. Invest. Univ. Quindío.(Col.), 23(1): 56-63; 2012



60

Revista de Investigaciones - Universidad del Quindío

Then we implemented the wavelet modulation te-
chnique as given by [3]. The conclusions arrived in 
Section III do not depend on any particular wavelet 
function. They are the same for Haar, Daubechies, 
Coiflet, etc. For the sake of simplicity, we adopted 
the Haar function. As this function assumes only 
values ± 1, it can be implemented without any ap-
proximation error. So, each symbol of the sequence 
b(m)= b(1), b(2),..., b(N) has been multiplied by 
the vector haar1 = {-1, 1, -1, 1}. The new sequen-
ce has 1024 points, and this corresponds to a four 
times spread in frequency. The new sequence and 
its wavelet coefficients up to scale j=4   are shown 
in Fig. 4. The top row is new sequence. Due to the 
number of points the individual symbols are not 
distinguishable. The next row represents the wave-
let coefficients at scale j = 1. It can be seen that they 
are not equal to zero. From scale j = 2 all wavelet 
coefficients are equal to zero, according to [12]:

Figure 3. Wavelet spectrum of a 256-point random sequence.
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If during the transmission of the wavelet modu-
lated sequence it is corrupted by noise, then its 
wavelet coefficients from scale j = 2 on will not 
be identically equal to zero. However, any wavelet 
coefficient different from zero represents a portion 
of the noise energy, and it can be eliminated from 
the signal representation without distorting the ori-
ginal sequence.

Wavelet decomposition is also power decomposi-
tion, i.e.,

is the signal power in the		  f r e q u e n c y 

Figura 4. Wavelet modulated sequence and its associated 
wavelet coefficients.
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range. It is important to note that we employ nor-
malized frequencies, and the entire range is (0, 1/2) 
It is also known that the Additive White Gaussian 
Noise - AWGN - has a flat spectrum, i.e., its power 
is uniformly distributed across the frequency ran-
ge. So, the noise power in a given frequency range 
is proportional to the frequency range length. As 
frequency range covered by the wavelet coeffi-
cients in scales from j = 2 on is (0, 1/4) i.e., half of 
the whole frequency, then the noise power in this 
range is half of the total noise power. Therefore, 
eliminating the wavelet coefficients in such scales 
means the elimination of half of noise power of the 
received signal and corresponding increase of 3 dB 
of the SNR at the detection point

Table 1. Three different Haar functions

Consider now three different Haar functions given 
by the vectors shown in Table I. The vector haar1 
represents the “mother wavelet” function, haar2, 
and haar3; the first two dilations of haar1. Each of 
these vectors has been used to wavelet modulate a 
random sequence and the wavelet coefficients for 
each of them have been evaluated. The wavelet 
spectra for the three sequences are shown in Fig. 5.

Figure 5. Wavelet spectra of three sequences obtained by 
wavelet modulation using Haar mother function and its two 
first dilations.

The wavelet spectrum corresponding to the sequen-
ce modulated by the haar1 function has only one 
value different from zero for j =1. As it has been 
shown before, the haar1 function modulation pro-
duces wavelet coefficients different from zero only 
for j = 1 and this directly reflected on the wavelet 
spectrum. On the other hand, the haar2 function 
is a first dilation of haar1 and produces signals 
that belong to the subspace W2. Accordingly, their 
wavelet coefficients that are different from zero are 
those corresponding to j = 2. The wavelet spectrum 
presents also only one value different from zero for 
j = 2. The same reasoning is valid for the haar3 
function, and its wavelet spectrum has only one va-
lue different from zero for j = 3.

This result has very important implications that can 
be summarized as follows:
•	 within certain limits dictated by practical con-

siderations, we can freely choose the Haar 
function to be used as the modulating signal;

•	 for any Haar function that is selected only the 
wavelet coefficients of only one specific scale 
are different from zero;

•	 at the receiving side of the communication sys-
tem, the noise power can be reduced by zeroing 
the wavelet coefficients of those scales that are 
not selected by the chosen Haar function;

•	 the noise power reduction provided by this pro-
cedure is at least 3 dB.

If, for example, we choose to use the function 
haar2, the wavelet coefficients which are different 
from zero correspond to j = 2, and they cover the 
frequency range (1/23 , 1/22) The length of the fre-
quency range is 1/23. The noise power reduction 
that can be achieved is
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In general terms, if we choose to wavelet modulate a sequence with a Haar function that generates a new 
signal which belongs to subspace Wj. The achievable noise power reduction will be j x 3 dB.
In DS-CDMA systems each user has a specific code, and this code allows the receiver to separate the 
information of interest from the interference produced by other users that transmit simultaneously. It is 
important to notice that in a real system the wavelet modulation technique would be used in association 
with the spreading technique and not as a substitution for it. In fact, the signal to be transmitted would be

However, for the sake of simplicity we have not considered the spread signal in this article, and because 
the conclusions would be exactly the same.

Nevertheless, as shown in [14], if we wavelet modulate the sequences of different users using different 
Haar functions, the wavelet coefficients that are different from zero will be in different scales for different 
users. If, for example, for user 1 we use the haar1 function, the wavelet coefficients different from zero 
will be scale j =1. If at the receiving side we eliminate all wavelet coefficients for j = 2 on, we will elimi-
nate half of the noise and power and all interference power coming from users that have their sequences 
modulated by Haar functions other than the haar1

Therefore, the wavelet modulation increases both SNR and SIR ratios.

CONCLUSIONS

After a brief introduction of the wavelet transform in which we have shown how any signal can be re-
presented by means of the wavelet coefficients, and how it can be recovered using wavelet transform 
inverse, we introduced the concept of wavelet modulation.
The wavelet modulation is a kind of spread spectrum technique that uses wavelet functions as the sprea-
ding signals. It has been shown that due to the orthonormality property of the one scale determined by 
the chosen wavelet function.
Such property can be used to implement a denoising technique, and the noise power reduction is at least 
3 dB.
The wavelet modulation can also be used to discriminate among different users and improve the SNI 
ratio as well.
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