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COMPUTATION AND IMPLEMENTATION ISSUES FOR BIODIVERSITY 
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RESUMEN

El proceso de digestión anaerobia comprende toda una red de reacciones secuenciales y paralelas, de doble 
naturaleza: bioquímica y fisicoquímica. Los  Modelos matemáticos diseñados  con el objetivo de ayudarnos 
a comprender  y optimizar  este proceso, describen estas reacciones de forma estructurada.  Siendo el mode-
lo de digestión anaerobia Nº 1 (ADM1) el más extendido y bien establecido. Mientras que este y otros mo-
delos distinguen diferentes microorganismos involucrados en diversas reacciones, a nuestro conocimiento 
ninguno de ellos describe la diversidad entre organismos con la misma función, es decir, que participan en 
la misma reacción. Sin embargo, la evidencia experimental disponible sugiere que la estructura y propieda-
des de una comunidad microbiana pueden estar influenciadas por las condiciones operacionales del proceso 
y a su vez también determinan el funcionamiento del reactor. Con el fin de describir adecuadamente estos 
fenómenos, los modelos matemáticos deberían considerar la diversidad microbiana subyacente. Así quedó 
mostrado en uno de nuestros trabajos anteriores, extendiendo ADM1 con objeto de describir la diversidad 
microbiana entre organismos de un mismo grupo funcional. El modelo resultante fue llamado ADM1_N. 
Debido a su complejidad y rigidez, la implementación del modelo no es una tarea sencilla y deben conside-
rarse varios aspectos computacionales. En este trabajo, se presentan las experiencias obtenidas de algunas 
implementaciones en Matlab/Simulink de ADM1 y de ADM1 extendido (ADM1_N). Aspectos relaciona-
dos con las implementaciones en ecuaciones deferenciales ordinarias (EDO)  vs Ecuaciones Algebraico 
diferenciales (EAD), la rigidez del sistema, las  variables y constantes de tiempo, problemas algebraicos 
para el cálculo del pH y otras variables de estado problemáticas, algoritmos numéricos de solución y tiem-
pos de simulación son discutidos. El modelo resultante ha sido comparado con el tradicional ADM1 para 
simular datos experimentales provenientes de un reactor piloto anaerobio hibrido de lecho fluidizado y filtro 
con flujo ascendente. Los resultados obtenidos muestran que el modelo extendido mejora el ajuste de datos 
experimentales. 
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INTRODUCTION

The world presently derives some 60% of its energy 
from fossil fuels. It is however widely recognized that 
the supplies of these are limited and, at projected futu-
re rates of consumption, are likely to be depleted well 
before the end of this century (1). One of the great cha-
llenges of the new century is therefore to obtain new 
sources of renewable energy, capable of replacing fossil 
fuels. In addition to renewable sources of energy such 
as solar, wind or hydroelectric energy, the use of so-
lid, liquid and gaseous fuels from biomass-based raw 
materials is of importance. Biomass includes a broad 
range of materials (agriculture and forestry products 
and residues, fast-growing trees and grasses, farm and 
food wastes, municipal sludge and solid wastes, animal 
manure, marine and aquatic plants, industrial and ma-
nufacturing wastes) which are biological in nature and 
can be used to generate various forms of bio-energy. As 
such, biomass is a desirable source of renewable energy 
which can be converted by direct combustion or biolo-
gical and/or thermo-chemical liquefaction or gasifica-
tion into a variety of bio-fuels. Among these bio-fuels, 
biogas produced from anaerobic digestion of biomass is 
potentially a very important one.

Anaerobic Digestion (AD) is a complex series of biolo-

gical processes that take place in the absence of oxygen 
and by which organic matter is decomposed and bio-
converted on one hand into biogas, i.e., a mixture of 
carbon dioxide (CO2) and methane (CH4) as well as tra-
ce gases such as hydrogen sulfide (H2S) and hydrogen 
(H2) and, on the other hand, into microbial biomass and 
residual organic matter. Besides physicochemical reac-
tions, the process comprises two types of biochemical 
reactions: extracellular (disintegration and hydrolysis) 
and intracellular ones. The latter type involves a va-
riety of microorganisms, namely fermentative bacteria 
(i.e. acidogens, responsible for the uptake of sugar and 
amino acids), hydrogen-producing and acetate-forming 
bacteria (i.e. acetogens, degrading long chain fatty 
acids, valerate, butyrate and propionate), and archaea 
which convert acetate or hydrogen into methane (i.e. 
methanogens). Other types of anaerobes play important 
roles in establishing a stable environment at various sta-
ges of methane fermentation. An example of the latter 
is homoacetogens, which can oxidize or synthesize ace-
tate depending on the external hydrogen concentration 
(2).

Several advantages are recognized to AD processes 
when used for waste and wastewater treatment: (i) high 
capacity to treat slowly degradable substrates at high 
concentrations, very low sludge production (5 to 10 ti-
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mes less than in aerobic processes), (ii) potentiality for 
valuable intermediate metabolites production, (iii) low 
energy requirements (no aeration is required), (iv) re-
duction of odors in a closed system, (v) pathogens re-
duction and (vi) possibility for energy recovery through 
methane combustion. As a consequence, AD compares 
very favorably with activated sludge processes in terms 
of energy balance and sludge production (Cf. Figure 1) 
and this makes it very well adapted to highly concen-
trated wastewater and solid wastes. Last but not least, 
when carried out properly and thoroughly, the digestion 
process will transform toxic organic materials into clean 
fertilizers which are free of pathogens and weed seeds.

However, AD processes also have drawbacks: (i) the 
low sludge production is closely linked to the slow 
growth of micro-organisms. As a consequence, the 
start-up phase is often tedious and some time is required 
(e.g., 2-4 months or longer) before steady state condi-
tions are obtained, (ii) AD micro-organisms are highly 
sensitive to overloads of the process and disturbances of 
several causes, (iii) AD is a complex process involving 
many different micro-organisms which is still not com-
pletely understood.

These drawbacks explain probably that AD processes 
are not more widely used at the industrial scale. In the 
past, the lack of knowledge concerning AD processes 
led indeed to breakdowns, ranging from minor to ca-
tastrophic, mainly due to organic overloads of various 
origins. They created some kind of suspicion towards 
this process and delayed its development at the indus-
trial scale. This is why actual research aims not only 
to extend the potentialities of anaerobic digestion, but 
also to optimize anaerobic processes and increase their 
robustness towards perturbations.

In general, anaerobic reactors are affected by external 
changes, although the severity of the effect is depen-
dent on the type, magnitude, duration and frequency of 
the imposed changes (3). Typical responses indicating 
reactor failure include a decrease in performance, accu-
mulation of reaction intermediates such as volatile fatty 
acids (VFAs), drop in pH and alkalinity, change in bio-
gas production rates and compositions, sludge washout 
and shifts in microbial community structure.
The availability of new molecular biological tools for 
studying microbial communities in bioreactors and 
other engineered systems without cultivation has resul-
ted in remarkable insights linking microbial diversity 
and dynamics to process stability. Fernandez et al. (4), 
monitored the community dynamics of Bacteria and 
Archaea in a functionally stable, continuously mixed 
methanogenic reactor, fed with glucose, over a 605 day 
period. Even though the reactor maintained constant 
pH and COD removal during this period, they found 
differences in the levels of diversity and dynamics bet-
ween the Bacterial and Archaeal domains, indicating 
that functional stability does not imply community sta-
bility, i.e. levels of individual populations fluctuate in 
a functionally stable community. Similar results were 
observed in another methanogenic reactor system, a 
fluidized bed reactor fed with vinasse (wine distillation 
waste) in which the biomass was immobilized on pow-
der from porous volcanic stone (5).
Another aspect concerns the effect of operational dis-
turbances on the underlying microbial community. Fer-
nandez et al. (6) experimentally investigated the effect 
of substrate loading shocks on population dynamics. 
For continuously mixed methanogenic reactors that 
maintained two different communities, they found that 
the less stable community structure resulted in more 
stable functioning. These results were attributed to the 
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Figure 1. Comparison of anaerobic digestion with activated sludge processes
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substrate processing structure that was developed in 
each reactor type prior to perturbation: substrate pro-
cessing through parallel pathways was associated with 
a functionally more stable (resilient) system, in contrast 
to serial processing of substrate. An important outcome 
of these and other experiments is the realization that po-
pulation diversity alone does not drive ecosystem stabi-
lity. The positive relationship between the presence of 
multiple pathways towards a product (parallel proces-
sing of substrate) and functional stability parallels theo-
retical concepts in higher ecological organization (7). 
Ecosystem stability is not the outcome of population di-
versity as such, but of functional redundancy, which is 
ensured by the presence of a reservoir of species able to 
perform the same ecological function. Recognizing the 
diversity and the links within each key functional group 
of a system can lead to better ways to model diversity 
and functioning, and can help to improve process sta-
bility (8).

It is our belief that the engineering of wastewater 
treatment systems would be improved if one could pre-
dict and manipulate the associated microbial diversity. 
Mathematical models, in which data on micro-scale 
molecular diversity has been incorporated to more 
closely represent wastewater treatment processes, can 
provide a useful tool to reach this goal. Such models 
can be used to gain insight in the influence of process 
conditions on the selection of certain types of bacte-
ria. In a later stage, these models can also be used to 
develop efficient control strategies adapted to model-
based population optimization. In this contribution, this 
approach is demonstrated for two different wastewater 
treatment applications. With respect to anaerobic di-
gestion, the Anaerobic Digestion Model No. 1 (ADM1, 
(9)), developed by the corresponding International 
Water Association (IWA) Task Group, has become 
widespread and generally accepted. However, ADM1 
does not distinguish between microorganisms perfor-
ming the same reaction – which implies all of them are 
assumed to have the same properties – and can therefo-
re not adequately represent or predict experimental re-
sults concerning this type of interspecies diversity. The 
need for incorporation of detailed micro-scale data into 
current wastewater treatment models was also indicated 
previously by Yuan and Blackall (10), regarding the in-
fluence of plant design and operation on microbial com-
munity structure and microbial properties in activated 
sludge systems.

Although a thorough discussion of an appropriate de-

finition of species is beyond the scope of the current 
work, we feel that it is important to provide the ‘‘spe-
cies concept’’ used throughout this manuscript. In our 
model, species are defined as groups of like individuals 
that share a common set of kinetic and stoichiometric 
characteristics. This may or may not correspond to 
species as defined by 16S ribosomal DNA sequence 
comparisons (11) nor species as defined by operational 
taxonomic units (OTU) based on molecular fingerprin-
ting assays (12). This contribution presents an approach 
for modeling microbial diversity in the anaerobic diges-
tion process, applied to the standard ADM1 which has 
been extended with multiple species for each reaction. 
Experimental results will be used to compare classical 
models such as ADM1 with an increased complexity 
model and further simulations will show that microbial 
diversity can lead to different results and different con-
clusions about some experimental results. The extended 
model has subsequently been applied to handle micro-
bial diversity in both normal conditions, not leading to 
process imbalance, and abnormal situations, characte-
rized by the presence of inhibiting ammonia levels in 
the reactor.

MATERIALS AND METHODS

Experimental setup
The schematic diagram of the laboratory scale Up-flow 
Anaerobic Sludge Filter Bed (UASFB) reactor (diame-
ter 12 cm; height 117 cm; effective volume 9.8 L) used 
in this study is shown in Figure 2. The reactor column 
was made up of Plexiglas and constituted of two com-
partments: the bottom part was operated as a UASB 
reactor whereas the top part was operated as an anae-
robic filter. The top portion of the UASFB reactor was 
randomly packed with 90 pieces of small cylindrical, 
buoyant polyethylene packing media (height: 29 mm; 
diameter: 30–35 mm; density: 0.93 kg/m3), and baffled 
with 16 partitions. Fifty percent of the reactor volume 
(excluding the headspace of 30 cm height) was filled 
with the packing media.

The reactor, operated at 33±1°C, was equipped with a 
continuous internal recirculation system from top to the 
bottom (recirculation rate: 9 L/h). Recirculation was 
done mainly to eliminate the possibility of high orga-
nic loading close to the feed port and to favor better 
wastewater/sludge contact. The digester was seeded 
with granules (15% by total volume) originating from 
a UASB digester treating cheese wastewaters. This hy-
brid UASFB reactor was operated for a total period of 
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232 days. Continuous feeding of the reactor was started 
with an initial OLR of 3.1 gCOD/L d. OLR was then 
increased stepwise by increasing the substrate concen-
tration from 3.1 to 21.7 g/L (around 95% of the total 
COD was soluble), while maintaining a constant HRT 
of 1.15 days. A CODs removal efficiency of 80% was 
considered as the threshold level in the present study for 
the operation of the UASFB reactor. The OLR was pro-
gressively increased by 20–30% once or twice a week 
until the CODs removal dropped below 80%. The feed 
was supplemented with nutrients to attain a COD: N: P 
ratio of 400:7:1 in the wastewater. The feed pH was ad-
justed to 6–6.5 using a 6 N sodium hydroxide. The fo-
llowing measurements are available on-line: input and 
recirculation liquid flow rates, pH in the reactor and in 
the input wastewater, temperature, biogas output flow 
rate, CO2, CH4 and H2 composition in the gas phase, 
total organic carbon, soluble chemical oxygen demand, 
VFAs and bicarbonate concentrations and total and par-
tial alkalinity in the liquid phase. More details on the 
process can be found in Rajinikanth et al. (13).

The experiments were performed with distillery vinas-
se (wine residue after distillation), which was obtained 
from a local distillery around Narbonne, France. In this 
type of wastewater, soluble COD is mainly present as 
monosaccharides (Ssu in ADM1) and little as amino 
acids (Saa) and long chain fatty acids (Sfa). Particula-
te COD is mainly present in the form of carbohydrates 
(Xch), besides some composites (Xc), proteins (Xpr) 
and lipids (Xli). 
The input VFA values were calculated from measured 
concentrations of acetate (Sac), propionate (Spro), bu-
tyrate (Sbu) and valerate (Sva). The initial pH resulted 

from the ionized forms of VFAs, bicarbonate, ammonia 
and cation/anion concentrations. Ammonia (SIN) and 
bicarbonate (SIC) were measured by Keljdahl’s method 
and using a TOC meter, respectively. Anion concentra-
tion (San) was taken equal to SIN and cation concen-
tration (Scat) was adjusted in each case according to 
the initial experimental pH. The concentrations of these 
individual components used in the model as process in-
puts are shown in Table 1.

Model structure
The IWA Anaerobic Digestion Model No. 1 (ADM1, 
Batstone et al., 2002) was extended to handle microbial 
diversity within functional groups. In the traditional 
ADM1 model, one microbial population is associated 
to each reaction. Seven functional groups of microor-
ganisms are distinguished, corresponding to the degra-
dation of sugar (by Xsu), amino acids (by Xaa), LCFA 
(by Xfa), valerate and butyrate (by Xc4), propionate (by 
Xpro), acetate (by Xac) and hydrogen (by Xh2) and one 
microbial population is associated to each reaction. In 
order to account for microbial diversity, the traditional 
ADM1 model was extended in such a way that multiple 
species are associated to each functional group. 
Whereas the original ADM1 possesses 24 state varia-
bles, of which 7 biomass species (7 functional groups, 
1 species per functional group), the extended model 
includes 7.N different biomass species (7 functional 
groups, N species per functional group), of 17+7.N state 
variables in total. The number of associated reactions is 
extended from 19 to 15.N+4. The resulting model will 
further be denoted as ADM1_N, where ‘N’ refers to the 
extension of the original model for microbial diversity 
with N species for each group. Within each functional 

Constituent Values Constituent Values 

Sugars 0.420*CODt_in Carbohydrates 0.90*CODp_in 

Amino acids 0.020*CODt_in Proteins 0.07*CODp_in 

Long Chain Fatty acids 0.010*CODt_in Lipids 0.03*CODp_in 

Total Valerate 0.035*CODt_in Inorganic Nitrogen 0.05/18*CODt_in 

Total Butyrate 0.181*CODt_in Inorganic Carbon 0.003/18*CODt_in 

Total Propionate 0.128 *CODt_in Total input COD CODt_in* 

Total Acetate 0.152*CODt_in Input particulate COD CODp_in* 

 * variable input signals   

 

Table 1. Input concentrations of the wine distillery wastewater used during the experiments
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group, species may differ in terms of their yield coeffi-
cient Y as well as Monod maximum specific uptake rate 
km and half saturation constant Ks.

In our case, the yield coefficient was assumed constant 
as in reality the variability of this parameter is low. Wi-
thin a functional group, the kinetic parameters km and 
Ks were randomly chosen from a statistical distribution. 
The distribution type and their parameters values could 
be found following a curve-fitting process using expe-
rimental data from each reactor type i.e., with the expe-
rimental data and the model, we first select the distribu-
tion type (among others normal, uniform or unimodal, 
bimodal), next their parameters (mean and standard de-
viation). We run the simulations and if the model does 
not fit experimental data, we change distribution para-
meters in first instance. If the misalignment persists, we 
change modal type and in last trial, we change the dis-
tribution type.

This approach adds a stochastic component to 
ADM1_N, compared to the deterministic ADM1. It is 
clear that many other approaches to define the micro-
bial properties within functional groups can be thought 
of. They are all likely to be stochastic since microbial 
properties cannot be defined with certainty. In order to 
maintain comparable conditions for simulations, the 
initial biomass concentrations in ADM1 will be distri-
buted equally among the corresponding microbial po-
pulations in ADM1_N.

Biomass retention in the UASFB reactor has been mo-
deled in the simplified way suggested in the ADM1 
report (9), with a term including the residence time of 
solids (tres,x) in the biomass mass balance equation to 
account for the difference between hydraulic retention 
time (HRT) and solid retention time (SRT). The resul-
ting model has been implemented in MATLAB®/Simu-
link. Its applicability has first been tested by Ramirez 
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and Steyer (14) to model anaerobic digestion in a fixed 
bed reactor. In this contribution, a thorough model va-
lidation has been performed on experimental data for 
UAFSB reactor. It is important to note that the pre-
sented modeling approach is generic and can also be 
applied to other processes. Volcke et al. (15) demons-
trated the applicability of a model including different 
species performing the same reaction, describing ex-
perimental nitrification data through a model with two 
types of ammonium oxidizers.
Developing and tuning mathematical models in normal 
situations are nowadays a well defined procedure that 
can be easily performed, even with complex models 
such as ADM1. However, developing and tuning a mo-
del to adequately represent abnormal situations is still a 
difficult and challenging task. In particular, when facing 
inhibition by a toxicant, anaerobic digestion processes 
may experimentally present different behaviors that are 
still not fully understood: one process can indeed show 
high robustness with respect to the presence of a toxi-
cant while another similar process is much more sen-
sitive to this toxicant. It is indeed likely that different 
species will exhibit different behaviors towards these 
substances. The effect of nonreactive toxicant affecting 
all species has been examined by Ramirez and Steyer 
(14). Other non-reactive toxicant such as ammonia in-
hibits a specific population, in this case methanogens.

Computation and implementation issues
The availability of faster, more powerful computers 
allows for more complex models to be simulated but it 
is clear that a biodiversity model, which includes many 
species (e.g. ADM1_N), requires significant computa-
tional power. For steady-state simulation (constant in-
puts), the computational burden is relatively acceptable 
but for dynamic simulations (changing inputs), simula-
tion time becomes extensive when the evaluation period 
is long. 
Moreover, dynamic and especially stochastic inputs in 
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combination with the inherent structure of the ADM1_N 
further complicate the simulations due to numerical 
considerations and restrictions. In this section, we dis-
cuss the implementation of the Extended Anaerobic 
Digestion Model no 1 (ADM1_N) in Matlab/Simulink. 
This includes computational aspects encountered in the 
implementation of the model and some solutions in or-
der to improve the simulation speed. The effort to im-
prove the simulation speed of the ADM1_N is incited 
by the need to reduce the simulation time for biodiversi-
ty model. However, the results presented in this section 
are general and other users of the general ADM1 should 
also benefit from these results.

A system is called stiff, when the range of the time 
constants is large. This means that some of the system 
states react quickly whereas some react sluggishly. The 
ADM1_N is a very stiff system with time constants ran-
ging from fractions of a second to months. This makes 
the simulation of such a system challenging and in or-
der to avoid excessively long simulation times, we need 
to be somewhat creative when implementing the model.

Some of the solvers in Matlab/Simulink are so called 
stiff solvers and, consequently, capable of solving stiff 
systems. However, a problem common to all stiff sol-
vers is the difficulty to handle dynamic input - including 
noise. The more stochastic or random an input variable 
behaves, the more problematic is the simulation using 
a stiff solver. The reason for this is that in stiff solvers, 
prediction of future state values is carried out. Howe-
ver, predictions of future state values affected by sto-
chastic inputs will result in poor results, slowing down 
the solver by limiting its ability to use long integration 
steps. Simulation of ADM1_N is, thus, subject to the 
following dilemma: ADM1_N model is a very stiff sys-
tem and, consequently, a stiff solver should be used. 
However, if we use the model for control simulation 
purpose, noise must be included, calling for an explicit 
(i.e. non-stiff) solver.

When the states of a system are described only by ordi-
nary differential equations, the system is said to be an 
ODE system. If the system is stiff, it is sometimes pos-
sible to rewrite some of the system equations in order 
to omit the fastest states. The rationale for this is that 
from the slower state’s point of view, the fast states can 
be considered instantaneous and possible to describe by 
algebraic equations. Such systems are normally referred 
to as differential algebraic equation (DAE) systems. By 
rewriting an ODE system to a DAE system, the stiff-

ness can be decreased, allowing for explicit solvers to 
be used and for stochastic elements to be incorpora-
ted. The drawback is that the DAE system is only an 
approximation of the original system and the effect of 
this approximation must be considered and investigated 
for each specific simulation model.
As already mentioned, ADM1_N model includes time 
constants in a wide range; from milliseconds for pH 
to weeks or months for the states describing various 
fractions of active biomass. Since most control actions 
affecting the anaerobic digester are fairly slow, it makes 
sense to investigate which fast states can be approxi-
mated by algebraic equations. In Batstone et al. (2002), 
it is suggested that the pH (SH+) state is calculated by 
algebraic equations. However, this will only partially 
solve the stiffness problem. There are other fast states 
and a closer investigation suggests that the state descri-
bing hydrogen (Sh2) also needs to be approximated by 
an algebraic equation.

As mentioned above, stiffness of the ADM1 can be re-
duced by approximating the differential equations of 
the pH and Sh2 states by algebraic equations. An impli-
cit algebraic equation for the pH calculation is given in 
Batstone et al. (9). It has been suggested to calculate 
the SH+ and, consequently, the pH from the sum of all 
charges, which is supposed to be zero. To do so, the 
ion states are replaced in terms of SH+ and total con-
centrations. The differential equation for the Sh2 sta-
te, explicitly given in Rosen and Jeppsson (16), can be 
approximated by an algebraic equation in a similar way 
as was the case for the pH state, simply by setting its 
differential to zero (assuming fast dynamics). The ob-
tained implicit algebraic equations are non-linear and 
therefore can be solved only by an iterative numerical 
method. In this case, the Newton-Raphson method used 
in Volcke et al. (17) for calculation of the pH and equi-
librium concentrations was implemented. By using this 
method the new value of the unknown state is calcula-
ted at each iteration step as: 

     
     

(       |  )
 

 Where S0 is the value of the state obtained from the pre-
vious iteration step and E(S0) is the value of the impli-
cit algebraic equation that has to be zero for the equi-
librium. The gradient of the algebraic equation dE(S)/
dS is also needed for calculation of the new state value. 
The iteration is repeated as long as E(S0) remains larger 
than the predefined tolerance value, which in our case 
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is set to 10-12. Normally only two or three iterations are 
required to solve the equation at each time step.

RESULTS AND DISCUSSION

The behavior of the modified anaerobic digestion mo-
del, ADM1_N, has been compared to the one of the 
standard ADM1 and to experimental results in simula-
ting the behavior of a pilot-scale UASFB reactor ope-
rated under varying input OLR. The number of species 
per reaction is arbitrary and in this study has been set 
to 10, to keep a reasonable computation speed. It was 
shown (18) that it is not sufficient to describe only pH 
as an algebraic state. Also the hydrogen state must be 
approximated by an algebraic equation to obtain satis-
fying results. The reformulation of the model results in 
a decrease in simulation time of the ADM1_10 simu-
lation period from approximately a day to less than an 
hour. Within a functional group, the kinetic parameters 
km and Ks were chosen from a normal bimodal distri-
bution, with means of  μ1=0.6k ,μ2=1.4k and standard 
deviations of σ1,2=0.125k, where k is the value of the 
corresponding standard ADM1 parameter (See Figure 
4). The results are described in what follows.

Simulation of UASFB with varying OLR: ADM1 vs. 
ADM1_10
Previous experience in simulating the behavior of a 
reactor fed with the same wine distillery wastewater 
(14) led to the identification of the main ADM1 para-
meters which need to be modified in order to reasonably 
reflect the experimental data. Only the maximum spe-
cific substrate uptake rate (km) and the half saturation 
constant (Ks) for acetate and propionate were calibra-
ted to fit the data (See Table 2). The resulting values 
were used in all simulations, with ADM1 as well as 
ADM1_10 (in the latter case as center values).

 

Parameter Acetate Propionate 

km  

(kgCOD/kgCOD.day) 

1.93 (8) 1.41 (0.15) 

KS    

(kgCOD/kgCOD.day) 

2.51 (13) 1.41 (0.10) 

Values in parenthesis are the recommended values in STR 
 

Table 2. Main estimated parameters to fit the ex-
perimental data.

 
Figure 3. Kinetic parameters in ADM1_10

Figure 4 compares the experimental data with the simu-
lation results obtained with both models for the UAS-
FB reactor operated at a varying input loading rate by 
varying the influent concentration while maintaining a 
constant HRT. As it is seen both models can simulate 
nicely the dynamic evolutions of the main variables, in 
the liquid and also in the gas phase. As a consequence, 
assessing the most appropriate model among ADM1 
and ADM1_10 is a tedious, not to say impossible, 
task. Note that the main purpose of this study was not 
to perfectly fit these data but to evaluate the ability of 
both models to adequately predict the behavior of this 
particular digestion process. Soluble COD, VFAs and 
biogas production values are higher in ADM1 than in 
ADM1_10 since the amount of biomass from ADM1 
is lower than the biomass from ADM1_10. This is in 
agreement with the diversity–productivity hypothesis 
of Tilman et al. (19) and the phenomenon is known as 
‘‘over-yielding’’. 

Between day 100 and 200, both models over-predicted 
VFA concentrations. It appeared that the simulated rate 
at which acetate was converted to methane under the 
load imposed was somewhat under-estimated. This 
may have resulted from either under-estimation of the 
substrate consumption coefficients for aceticlastic me-
thanogenesis or an over-estimation of the inhibition of 
this activity by ammonia. The models predict well the 
dynamics of the biogas production rate and composi-
tion as a response of the load imposed. Small deviations 
in predicting the biogas production and quality have 
been found, which may be attributed to the fact that 
the standard ADM1 uses the same gas/liquid transfer 
coefficients for all gases (CO2, CH4, H2), while this is 
not the case in reality. Besides, also the dependence of 
these coefficients on the specific reactor configuration 
applied has been neglected. 
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Figure 4. Behavior of a UAFSB reactor: experimental data versus simulation re-
sults with ADM1 and ADM1_10

The pH was also quite accurately simulated and the mo-
dels were able to reflect the trends that were observed in 
experimental data. The pH prediction is closely related 
to the cation and anion concentrations in the reactor, 
and actually, the difference between the two concentra-
tions. Since the ion concentrations were not measured, 
it was then calculated using the pH value and taking 
into account the concentration of ammonia, alkalinity 
and VFA concentration in the reactor. The value of the 
input cation from the reactor minus the input anion con-
centration in the feed was arbitrarily increased in the 
models, so that the pH values were calibrated. On day 
35, about 300 mL of sludge were accidentally dischar-
ged out of the reactor (connection failure at the bottom 
of the reactor) and hence the performance of the UAS-
FB was disturbed. This disturbance was not included in 
the simulations and may be this explains the differences 
mainly in CODs and VFAs between the simulated and 
experimental data during the period 35–57 days.

The main difference between the ADM1 and ADM1_10 
models lies in the biomass evolutions. Figure 5 shows 
the obtained specific growth rates and the dynamic evo-
lution of acetate degraders during these simulations. 
Similar results were obtained for other degraders (not 
shown). The specific growth rate in terms of substrate 
concentrations (Monod curves) are depicted too.

As it is seen in Figure 5c we have two biomass groups: 
k-strategists (species 1–5) vs. µ-strategists (also known 
as R-strategists, species 6–10) which is related to the 
fact that we have combined high KS values with high 
µ values and low KS values with low µ values. After an 
initial decrease of all species, related to a decrease of 
total biomass, from day 150 on, species 6–10 outcom-
pete species 1–5, (Figure 5d), which is attributed to 
their higher growth rate (see Figure 5c). At the same 
time, acetate concentration switches from low values to 
high ones (data not shown), leading to a competitive 
advantage of the biomass group of m-strategists. This 
competitive advantage is also maintained for a longer 
simulation period: even after 3000 days, species 6–10 
all survive (data not shown).

CONCLUSIONS

A methodology to account for microbial diversity in 
complex but structured models such as the anaerobic di-
gestion model ADM1 has been presented. This approach 
consists of extending the number of mass balances for 
an arbitrary number of species having the same function 
(performing the same reaction), while using a stochastic 
mechanism to select the corresponding microbial para-
meters. The resulting model remains powerful in repre-
senting macroscopic experimental data, but is moreover 
able to get insight in underlying microscopy
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Figure 5. Acetate degrading biomass evolution and corresponding specific growth 
rates: ADM1 vs ADM1_10

To deal with microbial diversity, the number of species 
considered for each biological reaction is arbitrary and 
in this study was set to 10, which is sufficient to de-
monstrate the potential of modeling microbial diver-
sity. Besides, the number of species considered may 
differ between different functional groups (reactions). 
Moreover, handling a very high number of species per 
reaction (e.g. 100–1000) can be seen as a way to re-
duce efforts required for parameter estimation. Indeed, 
only a ‘‘global’’ value of the model parameters such as 
in ADM1 would be required, microbial diversity being 
later accounted for by the high number of species han-
dled with random kinetic parameters centered around 
the average values found to fit ADM1.

In this paper, several computational aspects of the Mat-
lab/Simulink implementation of the ADM1 for use in the 
Biodiversity Model were discussed. It is shown that op-
timizing the computational efficiency of the ADM1_N 
implies that the stiffness of the ADM1 must be overco-
me so that fast simulation is achieved for dynamic input 
data, using a solver that handles stochastic inputs. This 
means that the stiff solvers provided by Matlab/Simu-
link cannot be used. Instead, rewriting the system as a 
DAE system is the only possibility. It is shown that it is 
not sufficient to describe only pH as an algebraic state. 
Also the hydrogen state must be approximated by an 
algebraic equation to obtain satisfying results.

Application of the presented methodology to represent 
– but not predict or engineer – biodiversity in other 
structured models, such as activated sludge models 

(ASMs) is straightforward. This offers wide perspecti-
ves not only in terms of modeling but also in terms of 
control objectives since microbial population appears 
nowadays to be a major component that drives process 
performances.
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