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ABSTRACT

This paper presents the design and implementation of three System-on-Chip (SoC) cores, which implement the 
Digital Signal Processing (DSP) functions: Finite Impulse Response (FIR) filter, Infinite Impulse Response (IIR) 
filter and Fast Fourier Transform (FFT). The FIR-filter core is based on the symmetrical realization form, the IIR-
filter core is based on the Second Order Sections (SOS) architecture and the FFT core is based on the Radix 22 
Single Delay Feedback (R22SDF) architecture. The three cores are compatible with the Wishbone SoC bus, and 
they were described using generic and structural VHDL. In-system hardware verification was performed by using 
an OpenRisc-based SoC synthesized on an Altera FPGA. Tests showed that the designed DSP cores are suitable 
for building SoC based on the OpenRisc processor and the Wishbone bus.
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RESUMEN

Este artículo presenta el diseño e implementación de tres núcleos para sistemas en un solo chip (SoC) que imple-
mentan las funciones de procesamiento digital de señales (DSP): filtro de respuesta finita al impulso (FIR), filtro 
de respuesta infinita al impulso (IIR) y transformada rápida de Fourier (FFT). El núcleo de filtro FIR está basado 
en la estructura simétrica, el núcleo de filtro IIR está basado en la arquitectura de secciones de segundo orden 
(SOS) y el núcleo de la FFT está basado en la arquitectura base 22 Single Delay Feedback (R22SDF). Los tres 
núcleos son compatibles con el bus para SoC Wishbone y fueron descritos usando VHDL estructural y genérico. 
Se realizó una verificación en hardware usando un SoC basado en el procesador OpenRISC y sintetizado en un 
FPGA de Altera, las pruebas mostraron que los núcleos DSP son apropiados para construir un SoC basado en el 
procesador OpenRISC y el bus Wishbone.

Palabras clave: Procesamiento digital de señales, filtros digitales, filtros de respuesta al impulso finita, filtros de 
respuesta al impulso infinita, transformada rápida de Fourier, sistemas en un solo chip, hardware de código abier-
to, procesador OpenRISC, bus Wishbone. 
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INTRODUCTION

Today’s technology uses heavily Digital Signal Pro-
cessing (DSP) on its applications, and since the past 
20 years (1) these applications have been growing up 
because the performed improvements to digital inte-
grated circuits in speed, integration capabilities and 
power consumption. The increased speed of integra-
ted circuits allows real time processing of signals with 
higher bandwidths such as the ones used in communi-
cation systems (1).  

Nowadays there are Digital Signal Processors (DSPs) 
devices specifically designed for DSP that perform 
real time filtering, Fourier transforms, Wavelet trans-
forms, or encoding processes on audio and video 
signals. Nevertheless, the parallel nature of DSP al-
gorithms has motivated research interest to hardware 
solutions based on reconfigurable targets such as the 
Field Programmable Gate Arrays (FPGAs); these so-
lutions have demonstrated improvements in speed 
and power consumption compared with the DSPs-
based ones (2).  

There are several FPGA-based DSP solutions, which 
are developed by private corporations such as Alte-
ra and Xilinx. These solutions include FIR filtering 
cores (3,4), FFT cores (5,6), among others; however 
these cores have expensive licenses for commercial 
use or they can be used for free only for academic 
purposes. 

Nonetheless, a new open source hardware develop-
ment model inspired from open source software mo-
dels has been deployed since the last ten years. This 
model has been supported by communities like Open-
Cores, which develops open source hardware under 
the Lesser General Public License (LGPL).  Open-
Cores community has remarkable products as the 
OpenRISC processor core (7) and the Wishbone bus 
specification (8), which jointly allow the development 
of SoC hardware. However, OpenCores community 
lacks of fully parameterizable DSP cores compatible 
with the Wishbone bus. 

By considering previous ideas, we developed cores 
FIR filter, IIR filter and FFT under the LGPL licen-
se, which are compatible with the Wishbone bus and 
allow the development of DSP-SoC based on the 
OpenRISC processor (9). The FIR-filter core is based 
on the symmetrical architecture (1,2), the IIR core is 

based on the SOS architecture (1,2), and the FFT core 
is based on the R22SDF architecture (10). The three 
cores were described using generic and structural 
VHDL and targeted to an Altera FPGA device.

This paper is organized as follows: First, some theore-
tical concepts about DSP and Wishbone bus are des-
cribed, then the design of the DSP cores architecture 
is presented and its functional blocks are described, 
later the in-system hardware verification results are 
discussed, and finally the conclusion and the ack-
nowledgements are presented.

THEORETICAL BACKGROUND

This section presents some theoretical concepts about 
the DSP functions that were implemented, and the 
SoC bus Wishbone.

FIR Filters
FIR filters are discrete Linear Time Invariant (LTI) 
systems that have a finite duration impulse res-
ponse h[n]. When h[n] is symmetrical the FIR fil-
ter has linear phase (1) leading to a constant group 
delay. Practical implementations of FIR filters are 
always stable because of their non-recursive nature. 
Eq. (1) shows the direct realization of a FIR filter. 
  

 
Here, x[n] is the input signal,  y[n] is the output signal 
and N is the length of the impulse response h[n]. There 
are several realization forms for FIR filters [1]; the di-
rect form, the symmetrical form, and the transpose form 
are the most used [1]. In the case of hardware imple-
mentations, the transpose form has the shortest critical 
path and it is less sensitive to the round-off errors when 
fixed point arithmetic is used [1][2]. Figure 1 shows the 
transpose realization form for a FIR filter with impulse 
response of length N. From Figure 1 it can be seen that 
the critical path of the transpose realization form is de-
termined by the combinatorial elements multiplier and 
adder. The transpose realization form uses N-1 registers.  
 
IIR Filters
IIR filters are discrete Linear Time Invariant (LTI) sys-
tems that have an infinite duration impulse response. 
Practical implementations of IIR filters can become 
unstable because of their recursive nature [1]. Eq. (2) 
shows the direct realization of a (M-1)-th order IIR filter.

Rev. Invest. Univ. Quindío.(Col.), 25(1): 53-62; 2014



55

 
 
 
Here, bk is the coefficients set for the non-recursive part, 
ak is the coefficients set for the recursive part, x[n] is 
the input signal, and  y[n] is the output signal. There are 
several realization forms for IIR filters [1]; the direct 
form, the type II form, the transpose type II form, and the 
SOS form are the most used [1]. The transpose type II 
form has the shortest critical path; nonetheless the SOS 
form is less sensitive to the round-off errors when fixed 
point arithmetic is used [1][2]. In the case of hardware 
implementations the SOS form has good stability for high 
order filters, and the critical path is minimized by using 
the transpose type II form for each second-order section. 
Figure 2 shows the transpose type II realization form for 
a single second-order section. Here, Nsect is the number of 
second-order sections and G is the total gain after the SOS 
decomposition [1], thus each second-order section has a 
gain of Nsect√G. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Transpose   realization   form   for   a  FIR  
filter  of    length  N.  
 
The whole IIR filter is composed by a cascade of Nsect 
second-order sections as the shown in Figure 2. From Fi-
gure 2 it can be seen that the critical path of the transpose 
type II realization form is determined by two multipliers 
and two adders. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Transpose type II realization form for second 
order section. 
 
The whole IIR filter is composed by a cascade of N_sect 
second-order sections as the shown in Figure 2. From Fi-
gure 2 it can be seen that the critical path of the transpose 
type II realization form is determined by two multipliers 
and two adders. 
 
Fast Fourier Transform
 
The FFT is an algorithm that efficiently computes the Dis-
crete Fourier Transform (DFT) of a discrete time signal [1]
[2]. The DFT of a signal x[n] is shown in Eq. (3)

 
 
 
According to the used radix, FFT algorithms can be ra-
dix-2, radix-4, radix-22, radix-8, mixed-radix, split-radix 
[2][5][6][10], among others. The radix-22 algorithms have 
become popular for hardware implementations of the FFT 
[5][6][10] due to their regularity, simple control, pipelined 
operation, and low hardware resources usage; the R22SDF 
architecture is based on a radix-22 algorithm and it is sui-
table for FFT hardware [5][6][10][11] . Figure 3 shows the 
R22SDF architecture for a 64-point FFT. The R22SDF ar-
chitecture uses two types of butterflies, which have a simi-
lar structure to the radix-2 butterfly, the R22SDF architec-
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ture has a resource usage similar to the radix-4 algorithms 
[10]. From Figure 3 it can be seen that control is performed 
by a log2 (n) -bit counter.
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Figure 3: R22SDF architecture for 64-point FFT.

OpenRISC processor and the Wishbone bus
 
OpenRISC is a Reduced Instruction Set Computer 
(RISC) 32-bit soft-core processor designed by Open-
Cores community, its architecture is described in a 
standard document [7]; also a synthesizable descrip-
tion in Verilog under the LGPL license is available 
through the OR1200 core [12]. OpenRISC allows 
the development of SOCs by using the interconnec-
tion bus Wishbone which is described in a standard 
document [8]. The OpenCores community has deve-
loped numerous cores with Wishbone connectivity 
such as Universal Asychronous Receiver Transmit-
ter (UART), memory controller, Ethernet controller, 
timer controller, among others; however the Open-
Cores community has no DSP cores with Wishbone 
connectivity. Figure 4 shows a basic Wishbone inter-
connection between a master device and a slave devi-
ce. Here, the master is either the OpenRISC processor 
or a bus controller; the slave is any Input/Output (I/O) 
device, coprocessor or hardware accelerator. Accor-
ding to the Wisbone specification [8] the signals in 
Figure 4 are described in Table 1. The DSP cores pro-
posed in this papers are Wishbone compatible, and 
they use the basic connection depicted in Figure 4. 
The OpenCores community has developed some refe-
rence SoCs based on the OpenRISC processor which 
are FPGA-synthesizable; one of the simplest is Min-
SoC [13], which allows an easy and fast verification 
of the OpenRISC-based SoC with custom slave mo-
dules such as the DSP cores we designed.

mDATo[31:0]
mDATi[31:0]

mADRo[31:0]
mSTBo
mWEo
mACKi

mCLKi
mRSTi

sDATi[31:0]
sDATo[31:0]
sADRi[31:0]
sSTBi
sWEi
sACKo

mCLKi
mRSTi

Master Slave
clk

reset

Figure 4: Wishbone bus basic connection.

Signal Description
mDATo/sDATi The data bus from master to 

slave (write operations).
mDATi/sDATo The data bus from slave to 

master (read operations).
mADRo/sADRi The address bus from master 

to slave.
mSTBo/sSTBi The chip select signal from 

master to slave. It is set by 
master during a write/read 
operation.

mWEo/sWEi The write enable signal from 
master to slave. It is set by 
master during a write opera-
tion.

mACKi/sACKo The acknowledgment signal 
from slave to master. It is set 
by slave after a successful 
write/read operation.

clk The global clock signal.
reset The global active high reset 

signal.
Table 1: Signal description of Wishbone bus.
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DSP CORES ARCHITECTURE
 
In this section we describe the designed DSP cores 
and the slave interfaces with the Wishbone bus. For 
all DSP cores we used fixed point arithmetic. Here 
the word length, guard bit, fractional part [2], filter 
order, and FFT length [1] are parameterizable features 
through VHDL generics. Each DSP core is compo-
sed of two functional unit, the processing unit and the 
slave interface unit; the processing unit performs the 
DSP operation according to the considered core and 
the slave interface unit is the Wishbone interface for 
the SoC connection. 
 
FIR-filter core
 
Figure 5 shows the block diagram of a FIR-filter core 
parameterized with N=50, word length of M=16 bits, 
and a guard bit of G=8 bits. In this case, the proces-
sing unit was designed by using the transpose realiza-
tion form shown in Figure 1. In Figure 5 the uncon-
nected signal ports are Wishbone compatible signals 
for OpenRISC-based SoC integration. The remaining 
signals are described as follows: The input_signal/
sdat_o pair is the port with the signal to be filtered 
and it has a length of M+G bits; the output_signal/
sdat_i pair is the port with the filtered signal and it 
has a length of M+G bits; the enable/start pair is the 
port that enables the filtering process in the proces-
sing unit; the filter_coef/HQ pair is the port with the 

Register Address
FIR_CONTROL[0:0] FIR_BASE + 0
FIR_DATA[M+G-1:0] FIR_BASE + 4
FIR_STATUS[0:0] FIR_BASE + 8
FIR_Q[3:0] FIR_BASE + 12
FIR_COEFF FIR_BASE + 16

FIR_DATA is a read/write register used to write/
read the input/filtered sample. FIR_CONTROL is 
a write-only register; when it is set by the user, the 
filtering process is started. FIR_STATUS is a read-
only register; it is set when the filtering process fi-
nishes. FIR_Q is a write-only register; in this address 
the user writes the number of fractional bits of the 
fixed-point representation of the filter coefficients. 
From FIR_COEFF starts an addressing space com-
posed of N consecutive 32-bit address positions 
where the user can write the 16-bit fixed-point filter 
coefficients starting from FIR_COEFF for h[0] and 
finishing with FIR_COEFF+4x(N-1) for h[N-1]. 
 
IIR-filter core
 
Figure 6 shows the block diagram of a IIR-filter core 
parameterized with Nsect=6, word length of M=16 bits, 
a guard bit of G=8 bits, and Q=13 fractional bits. In 
this case the processing unit was designed by using a 
cascade of Nsect pipelined SOS as the shown in Figure 
2. In Figure 6 the unconnected signal ports are Wis-
hbone compatible signals for OpenRISC-based SoC 
integration. The remaining signals are described as 
follows: The input_signal/sdat_o pair is the port with 
the signal to be filtered and it has a length of M+G bits; 
the output_signal/sdat_i pair is the port with the filte-
red signal and it has a length of M+G bits; the enable/
start pair is the port that enables the filtering process 
in the processing unit; the enable_out/enable_in pair 
is the flag that signals the filtering process comple-
tion; the filter_coef/HQ pair is the port with the filter 
coefficients and it has a length of 6xNsectxM bits; the 
gain/gain pair is the port with the gain Nsect√G for each 

DSP CORES ARCHITECTURE
 
In this section we describe the designed DSP cores 
and the slave interfaces with the Wishbone bus. For 
all DSP cores we used fixed point arithmetic. Here 
the word length, guard bit, fractional part [2], filter 
order, and FFT length [1] are parameterizable features 
through VHDL generics. Each DSP core is compo-
sed of two functional unit, the processing unit and the 
slave interface unit; the processing unit performs the 
DSP operation according to the considered core and 
the slave interface unit is the Wishbone interface for 
the SoC connection. 
 
FIR-filter core
 
Figure 5 shows the block diagram of a FIR-filter core 
parameterized with N=50, word length of M=16 bits, 
and a guard bit of G=8 bits. In this case, the processing 
unit was designed by using the transpose realization 

filter coefficients and it has a length of NxM bits; the 
Q/Q pair is the port with the number of fractional bits 
in the fixed-point representation of the filter coeffi-
cients and it has a length of 4 bits. Table 2 shows the 
register description of the Wishbone interface for the 
FIR-filter core.

Table 2: Register description of the FIR-filter core.
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SOS and it has a length of M bits; the en_out/en_out 
pair is the port with the number of used sections min-
us one from the N_sect available sections, and it has 
a width of 4 bits. In this case, Q fractional bits are 
used for the fixed-point representation of the filter 
coefficients and the gain. Table 3 shows the register 
description of the Wishbone interface for the IIR-filter 
core. IIR_DATA is a read/write register used to wri-
te/read the input/filtered sample. IIR_CONTROL is a 
write-only register; when it is set by the user, the fil-
tering process is started. IIR_STATUS is a write/read 
register; it is set when the filtering process finishes, 
and it is cleared with a write operation. IIR_NSECT 
is a write-only register; in this address, the user writes 
the number of used sections minus one from the Nsect 
available sections; IIR_GAIN is a write-only regis-
ter; in this address, the user writes the gain Nsect√G for 
each SOS by using fixed-point representation with Q 
fractional bits. From IIR_COEFF starts an addres-
sing space composed of 6xNsect consecutive 32-bit 
address positions where the user can write the 16-bit 
fixed-point SOS coefficients starting from IIR_CO-
EFF for a2-1

st SOS section, IIR_COEFF + 4 for a1-1
st 

SOS section, IIR_COEFF + 8 for a0-1
st SOS section, 

IIR_COEFF + 12 for b2-1
st SOS section, IIR_COEFF 

+ 16 for b1-1
st SOS section, and IIR_COEFF + 20 for 

b0-1
st SOS section; and finishing with IIR_COEFF + 

4x(6xNsect-6) for a2-Nsectst SOS section, IIR_COEFF 
+ 4x(6xNsect-5) for a1-Nsectst SOS section, IIR_CO-
EFF + 4x(6xNsect-4) for a0-Nsectst SOS section, 

FIR Filter Processing Unit

clk
enable
reset

input_signal[23:0]

Q[3:0]
filter_coeff[799:0]

clk

FIR Filter Slave Interface

reset
stb_i
we_i
dat_i[31:0]

adr[31:0]
sdat_i[23:0]

start
ack_o
Q[3:0]

dat_o[31:0]
sdat_o[23:0]

HQ[799:0]

output_signal[23:0]

IIR_COEFF + 4x(6xNsect-3) for b2-Nsectst SOS 
section, IIR_COEFF + 4x(6xNsect-2) for b1-Nsectst 
SOS section, and IIR_COEFF + 4x(6xNsect-1) for 
b0-Nsectst SOS section.
 

Figure 5: FIR-filter core.

Register Address
IIR_CONTROL[0:0] IIR_BASE + 0
IIR_DATA[M+G:0] IIR_BASE + 4
IIR_STATUS[0:0] IIR_BASE + 8
IIR_NSECT[3:0] IIR_BASE + 12
IIR_GAIN[15:0] IIR_BASE + 16
IIR_COEFF IIR_BASE + 20

Table 3: Register description of the IIR-filter core.

IIR Filter Processing Unit
IIR Filter Processing Unit

clk
enable
reset

input_signal[15:0]

gain[15:0]
filter_coeff[575:0] enable_out

clk
IIR Filter Slave Interface

reset
stb_i
we_i
dat_i[31:0]

adr[31:0]

sdat_i[23:0]

start
ack_o

gain[15:0]
dat_o[31:0]

sdat_o[23:0]
HQ[575:0]

output_signal[23:0]

en_out[3:0]

enable_in
en_out[3:0]

Figure 6: IIR-filter core.

FFT core
 
Figure 7 shows the block diagram of an FFT core pa-
rameterized with N=1024, word length of M=16 bits,  
and Q=15  fractional bits. In this case, the processing 
unit was designed by using the pipelined version of 
the R22SDF architecture developed in [11]. In Figure 
7, the unconnected signal ports are Wishbone com-
patible signals for OpenRISC-based SoC integration. 
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The remaining signals are described as follows: The 
Xinr/dat[15:0] pair is the port with the real part of 
the input sample and it has a length of M bits; Xini/
dat[31:16] pair is the port with the imaginary part of 
the input sample and it has a length of M bits; the 
enable/fft_enable pair is the port that enables the FFT 
computing for each input sample in the processing 
unit; the Xoutr/sdat_i[15:0] pair is the port with the 
real part of the output sample and it has a length of 
M bits; Xouti/sdat_i[31:16] pair is the port with the 
imaginary part of the output sample and it has a length 
of M bits; the enable_out/fft_enable_in pair is the flag 
that signals the FFT process completion for each input 
sample;  the frame_ready/fft_finish pair is the flag that 
signals the whole FFT process completion;  the index/
adr_fft pair 

FFT core
 
Figure 7 shows the block diagram of an FFT core pa-
rameterized with N=1024, word length of M=16 bits,  
and Q=15  fractional bits. In this case, the processing 
unit was designed by using the pipelined version of 
the R22SDF architecture developed in [11]. In Figure 
7, the unconnected signal ports are Wishbone com-
patible signals for OpenRISC-based SoC integration. 
The remaining signals are described as follows: The 
Xinr/dat[15:0] pair is the port with the real part of 
the input sample and it has a length of M bits; Xini/
dat[31:16] pair is the port with the imaginary part of 
the input sample and it has a length of M bits; the 
enable/fft_enable pair is the port that enables the FFT 
computing for each input sample in the processing 
unit; the Xoutr/sdat_i[15:0] pair is the port with the 
real part of the output sample and it has a length of 
M bits; Xouti/sdat_i[31:16] pair is the port with the 
imaginary part of the output sample and it has a leng-
th of M bits; the enable_out/fft_enable_in pair is the 
flag that signals the FFT process completion for each 
input sample;  the frame_ready/fft_finish pair is the 
flag that signals the whole FFT process completion;  
the index/adr_fft pair is the bit-reversed address [1]
[2] in On-chip RAM where the processed sample is 
written. Table 4 shows the register description of the 
Wishbone interface for the FFT core. FFT_DATA is 
a write-only register used to write the input samples. 
FFT_CONTROL is a write-only register; when it is 
written by the user the processing unit and the sta-
tus register are cleared; FFT_STATUS is a read-only 
register; it is set when the whole FFT process finis-

hes. From FFT_MEMORY starts an addressing space 
composed of N consecutive 32-bit address positions 
where the user can read the FFT results starting from 
FFT_MEMORY for X[0] and finishing with FFT_
MEMORY + 4x(N-1) for X[N-1].

FFT Processing Unit
clk

enable
reset

Xinr[15:0]
Xini[15:0] enable_out

clk FFT Slave Interfacereset
stb_i
we_i
dat_i[31:0]

adr[31:0]

sdat_i[31:0]

clear_out
ack_o

fft_enable
dat_o[31:0]

dat[31:0]

Xoutr[15:0]

fft_enable_in

frame_ready

Xouti[15:0]
index[9:0]

adr_fft[9:0]

clear

fft_finish

Figure 7: IIR-filter core.

Register Address
FFT_CONTROL[0:0] FFT_BASE + 0
FFT_DATA[31:0] FFT_BASE + 4
FFT_STATUS[0:0] FFT_BASE + 8
FFT_MEMORY FFT_BASE + 12

Table 4: Register description of the FFT core.
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dotted line. In this case, the MSE is                           Ta-
ble 5 shows the synthesis report for the FIR-filter co
re.                                    

IN-SYSTEM HARDWARE VERIFICATION
 
The three DSP cores were integrated into an Open-
RISC-based SoC built from the reference design 
MinSoC [13]. The SoC was synthesized on the Altera 
FPGA device EP2S60F1020C4 included in the deve-
lopment board TREX-S2-TMB [14]. The accuracy of 
the cores was measured in terms of the Mean Squared 
Error (MSE) between frequency responses in DFT 
domain as shown in Eq. (4)

Here X[k] is the frequency response in the DFT do-
main when it is computed by simulation using double 
precision floating point arithmetic, and X ̃[k] is the 
frequency response of the core in DFT domain. 
In the case of the FIR-filter core, we designed a 49-th 
order equiripple low-pass filter with cutoff frequen-
cies 3/8π rad/s and  π/2 rad/s. The core is parameteri-
zed with a 16-bit word length, a 15-bit fractional part, 
and a guard bit of 8 bits. Figure 8 shows the magnitu-
de frequency responses for the tested FIR-filter core.

Figure 8: Frequency response of the FIR-filter core.

In Figure 8, the continuous line depicts the magni-
tude frequency response of the FIR filter when it is 
computed by simulation using double-precision floa-
ting-point arithmetic. The frequency response of the 
FIR-filter core was computed by getting the impulse 
response and taking its DFT, this is depicted with the 

Parameter Value
Logic utilization         27 %                                             
Combinational ALUTs 11,598 / 48,352 ( 24 % )                         
Dedicated logic registers  1,947 / 48,352 ( 4 % )
Total block memory bits 0 / 2,544,192 ( 0 % )
DSP block 9-bit elements 100 / 288 ( 35 % )                               
Maximum operating frequen-
cy 

103.92 MHz

Table 5: Synthesis report for the FIR core with N=50.

The FIR-filter core requires the 27% of the resources 
and reaches up a maximum operating frequency of 
103.92 MHz.
In the case of the IIR-filter core, we designed a 12-
th order Butterworth band-pass filter with cutoff fre-
quencies 0.10625 rad/s, 0.11875 rad/s, 0.1025 rad/s, 
and 0.1225 rad/s. The core was parameterized with 6 
SOS sections, a word length of 16 bit, a fractional part 
of 13 bits, and a guard bit of 8 bits. Figure 9 shows 
the magnitude frequency responses for the tested IIR-
filter core.

Figure 9: Frequency response of the IIR-filter core.

In Figure 9, the continuous line depicts the magni-
tude frequency response of the IIR filter when it is 
computed by simulation using double-precision floa-
ting-point arithmetic. The frequency response of the 
IIR-filter core was computed by getting the impulse 
response and taking its DFT, this is depicted with the 
dotted line. In this case, the MSE is                        . 
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Parameter Value
Logic utilization         5 %                                             
Combinational ALUTs 2,201 / 48,352 ( 5 % )
Dedicated logic registers  504 / 48,352 ( 1 % )                             
Total block memory bits 0 / 2,544,192 ( 0 % )                            
DSP block 9-bit elements 288 / 288 ( 100 % )                              
Maximum operating 
frequency 

85.81 MHz

Table 6 shows the synthesis report for the IIR-filter 
core.

The IIR-filter core requires the 5% of the resources 
and reaches up a maximum operating frequency of 
85.81 MHz.
The FFT core was parameterized with 1024 points, a 
word length of 16 bit, a fractional part of 15 bits, and 
a total gain of       . Figure 10 shows the frequency 
responses for the tested FFT core.

Figure 10: Frequency response of the FFT core.

In this case, we computed the FFT for the signal     
 
. In Figure 10 the continuous line depicts the FFT 
computed by simulation using double-precision 
floating-point arithmetic; the dootted line depicts 
the FFT computed by the core. In this case, the 
MSE is                      .

Parameter Value
Logic utilization         69 %                                             
Combinational ALUTs 1,085 / 48,352 ( 2 % )                           
Dedicated logic registers  33,095 / 48,352 ( 68 % )                         
Total block memory bits 73,728 / 2,544,192 ( 3 % )                       
DSP block 9-bit elements 32 / 288 ( 11 % )
Maximum operating 
frequency 

115.3 MHz

Table 7 shows the synthesis report for the FFT core. 

Table 7: Synthesis report for the FFT core with 
N=1024.

The FFT core requires the 69% of the resources and 
reaches up a maximum operating frequency of 115.3 
MHz.

Parameter Value
Logic utilization         100 %                                             
Combinational ALUTs 33,568 / 48,352 ( 69 % )       
Dedicated logic registers  39,428 / 48,352 ( 82 % )
Total block memory bits 494,464 / 2,544,192 ( 19 

% )                  
DSP block 9-bit elements 288 / 288 ( 100 % )

Maximum operating 
frequency 

55.05 MHz                          

Table 8: Synthesis report for the OpenRISC-MinSoC-
based DSP SoC.

In this case, the OpenRISC-based DSP SoC requires 
the 100% of the resources and reaches up a maximum 
operating frequency of 55.05 MHz. The constraint in 
operating frequency is due to the MinSoC SoC and 
not the DSP Cores.

CONCLUSION
 
We designed DSP Cores FIR filter, IIR filter, FFT, 
which are compatible with the Wishbone bus. The-
se cores allow the construction of DSP SoC systems 
based on the OpenRISC processor. These three DSP 
cores are parameterizable through VHDL generics 
and they have easy-to-use hardware/software interfa-
ces.  The three DSP cores we designed are the only of 
their kind in the OpenCores community because of 
the broad DSP functions availability, the Wishbone 
compatibility, the flexibility, and speed performance. 
The three cores have been tested on Altera FPGA de-
vices Cyclone II and Stratix II.
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