
53

OPEN CORES FOR DIGITAL SIGNAL PROCESSING

NÚCLEOS LIBRES PARA PROCESAMIENTO DIGITAL DE SEÑALES

Juan Camilo Valderrama-Cuervo1, Alexander López-Parrado2.
1. Universidad del Quindío – Colombia.
2. Universidad del Quindío, Universidad del Valle - Colombia.

Recibido: 07 de febrero de 2014
Aceptado: 27 de marzo de 2014

*Correspondencia del autor. Carrera 15 Calle 12 Norte, Universidad del Quindío, Código Postal 630004, Bloque de Ingeniería,
Tercer Piso, CEIFI, Armenia, Colombia. Tel: 3108282506.

Email: parrado@uniquindio.edu.co, alexander.lopez.parrado@correunivalle.edu.co.

ABSTRACT

This paper presents the design and implementation of three System-on-Chip (SoC) cores, which implement the
Digital Signal Processing (DSP) functions: Finite Impulse Response (FIR) filter, Infinite Impulse Response (IIR)
filter and Fast Fourier Transform (FFT). The FIR-filter core is based on the symmetrical realization form, the IIR-
filter core is based on the Second Order Sections (SOS) architecture and the FFT core is based on the Radix 22
Single Delay Feedback (R22SDF) architecture. The three cores are compatible with the Wishbone SoC bus, and
they were described using generic and structural VHDL. In-system hardware verification was performed by using
an OpenRisc-based SoC synthesized on an Altera FPGA. Tests showed that the designed DSP cores are suitable
for building SoC based on the OpenRisc processor and the Wishbone bus.

Keywords: Digital signal processing, digital filters, finite impulse response filters, infinite

RESUMEN

Este artículo presenta el diseño e implementación de tres núcleos para sistemas en un solo chip (SoC) que imple-
mentan las funciones de procesamiento digital de señales (DSP): filtro de respuesta finita al impulso (FIR), filtro
de respuesta infinita al impulso (IIR) y transformada rápida de Fourier (FFT). El núcleo de filtro FIR está basado
en la estructura simétrica, el núcleo de filtro IIR está basado en la arquitectura de secciones de segundo orden
(SOS) y el núcleo de la FFT está basado en la arquitectura base 22 Single Delay Feedback (R22SDF). Los tres
núcleos son compatibles con el bus para SoC Wishbone y fueron descritos usando VHDL estructural y genérico.
Se realizó una verificación en hardware usando un SoC basado en el procesador OpenRISC y sintetizado en un
FPGA de Altera, las pruebas mostraron que los núcleos DSP son apropiados para construir un SoC basado en el
procesador OpenRISC y el bus Wishbone.

Palabras clave: Procesamiento digital de señales, filtros digitales, filtros de respuesta al impulso finita, filtros de
respuesta al impulso infinita, transformada rápida de Fourier, sistemas en un solo chip, hardware de código abier-
to, procesador OpenRISC, bus Wishbone.

Open cores for digital signal processing. Valderrama et al.

Rev. Invest. Univ. Quindío. (Col.), 25(1): 53-62; 2014

54

Revista de Investigaciones - Universidad del Quindío

INTRODUCTION

Today’s technology uses heavily Digital Signal Pro-
cessing (DSP) on its applications, and since the past
20 years (1) these applications have been growing up
because the performed improvements to digital inte-
grated circuits in speed, integration capabilities and
power consumption. The increased speed of integra-
ted circuits allows real time processing of signals with
higher bandwidths such as the ones used in communi-
cation systems (1).

Nowadays there are Digital Signal Processors (DSPs)
devices specifically designed for DSP that perform
real time filtering, Fourier transforms, Wavelet trans-
forms, or encoding processes on audio and video
signals. Nevertheless, the parallel nature of DSP al-
gorithms has motivated research interest to hardware
solutions based on reconfigurable targets such as the
Field Programmable Gate Arrays (FPGAs); these so-
lutions have demonstrated improvements in speed
and power consumption compared with the DSPs-
based ones (2).

There are several FPGA-based DSP solutions, which
are developed by private corporations such as Alte-
ra and Xilinx. These solutions include FIR filtering
cores (3,4), FFT cores (5,6), among others; however
these cores have expensive licenses for commercial
use or they can be used for free only for academic
purposes.

Nonetheless, a new open source hardware develop-
ment model inspired from open source software mo-
dels has been deployed since the last ten years. This
model has been supported by communities like Open-
Cores, which develops open source hardware under
the Lesser General Public License (LGPL). Open-
Cores community has remarkable products as the
OpenRISC processor core (7) and the Wishbone bus
specification (8), which jointly allow the development
of SoC hardware. However, OpenCores community
lacks of fully parameterizable DSP cores compatible
with the Wishbone bus.

By considering previous ideas, we developed cores
FIR filter, IIR filter and FFT under the LGPL licen-
se, which are compatible with the Wishbone bus and
allow the development of DSP-SoC based on the
OpenRISC processor (9). The FIR-filter core is based
on the symmetrical architecture (1,2), the IIR core is

based on the SOS architecture (1,2), and the FFT core
is based on the R22SDF architecture (10). The three
cores were described using generic and structural
VHDL and targeted to an Altera FPGA device.

This paper is organized as follows: First, some theore-
tical concepts about DSP and Wishbone bus are des-
cribed, then the design of the DSP cores architecture
is presented and its functional blocks are described,
later the in-system hardware verification results are
discussed, and finally the conclusion and the ack-
nowledgements are presented.

THEORETICAL BACKGROUND

This section presents some theoretical concepts about
the DSP functions that were implemented, and the
SoC bus Wishbone.

FIR Filters
FIR filters are discrete Linear Time Invariant (LTI)
systems that have a finite duration impulse res-
ponse h[n]. When h[n] is symmetrical the FIR fil-
ter has linear phase (1) leading to a constant group
delay. Practical implementations of FIR filters are
always stable because of their non-recursive nature.
Eq. (1) shows the direct realization of a FIR filter.

Here, x[n] is the input signal, y[n] is the output signal
and N is the length of the impulse response h[n]. There
are several realization forms for FIR filters [1]; the di-
rect form, the symmetrical form, and the transpose form
are the most used [1]. In the case of hardware imple-
mentations, the transpose form has the shortest critical
path and it is less sensitive to the round-off errors when
fixed point arithmetic is used [1][2]. Figure 1 shows the
transpose realization form for a FIR filter with impulse
response of length N. From Figure 1 it can be seen that
the critical path of the transpose realization form is de-
termined by the combinatorial elements multiplier and
adder. The transpose realization form uses N-1 registers.

IIR Filters
IIR filters are discrete Linear Time Invariant (LTI) sys-
tems that have an infinite duration impulse response.
Practical implementations of IIR filters can become
unstable because of their recursive nature [1]. Eq. (2)
shows the direct realization of a (M-1)-th order IIR filter.

Rev. Invest. Univ. Quindío.(Col.), 25(1): 53-62; 2014

55

Here, bk is the coefficients set for the non-recursive part,
ak is the coefficients set for the recursive part, x[n] is
the input signal, and y[n] is the output signal. There are
several realization forms for IIR filters [1]; the direct
form, the type II form, the transpose type II form, and the
SOS form are the most used [1]. The transpose type II
form has the shortest critical path; nonetheless the SOS
form is less sensitive to the round-off errors when fixed
point arithmetic is used [1][2]. In the case of hardware
implementations the SOS form has good stability for high
order filters, and the critical path is minimized by using
the transpose type II form for each second-order section.
Figure 2 shows the transpose type II realization form for
a single second-order section. Here, Nsect is the number of
second-order sections and G is the total gain after the SOS
decomposition [1], thus each second-order section has a
gain of Nsect√G.

Figure 1: Transpose realization form for a FIR
filter of length N.

The whole IIR filter is composed by a cascade of Nsect
second-order sections as the shown in Figure 2. From Fi-
gure 2 it can be seen that the critical path of the transpose
type II realization form is determined by two multipliers
and two adders.

Figure 2: Transpose type II realization form for second
order section.

The whole IIR filter is composed by a cascade of N_sect
second-order sections as the shown in Figure 2. From Fi-
gure 2 it can be seen that the critical path of the transpose
type II realization form is determined by two multipliers
and two adders.

Fast Fourier Transform

The FFT is an algorithm that efficiently computes the Dis-
crete Fourier Transform (DFT) of a discrete time signal [1]
[2]. The DFT of a signal x[n] is shown in Eq. (3)

According to the used radix, FFT algorithms can be ra-
dix-2, radix-4, radix-22, radix-8, mixed-radix, split-radix
[2][5][6][10], among others. The radix-22 algorithms have
become popular for hardware implementations of the FFT
[5][6][10] due to their regularity, simple control, pipelined
operation, and low hardware resources usage; the R22SDF
architecture is based on a radix-22 algorithm and it is sui-
table for FFT hardware [5][6][10][11] . Figure 3 shows the
R22SDF architecture for a 64-point FFT. The R22SDF ar-
chitecture uses two types of butterflies, which have a simi-
lar structure to the radix-2 butterfly, the R22SDF architec-

Open cores for digital signal processing. Valderrama et al.

Rev. Invest. Univ. Quindío. (Col.), 25(1): 53-62; 2014

56

Revista de Investigaciones - Universidad del Quindío

ture has a resource usage similar to the radix-4 algorithms
[10]. From Figure 3 it can be seen that control is performed
by a log2 (n) -bit counter.

clk
W2[n] W3[n]

5 4

32 16

BF2
I

BF2I
Is

8

BF2
I

BF2I
Is

BF2
I

2

BF2I
I

1

X[k]
st s

3

4

2 1 0

t s t sx[n]

Figure 3: R22SDF architecture for 64-point FFT.

OpenRISC processor and the Wishbone bus

OpenRISC is a Reduced Instruction Set Computer
(RISC) 32-bit soft-core processor designed by Open-
Cores community, its architecture is described in a
standard document [7]; also a synthesizable descrip-
tion in Verilog under the LGPL license is available
through the OR1200 core [12]. OpenRISC allows
the development of SOCs by using the interconnec-
tion bus Wishbone which is described in a standard
document [8]. The OpenCores community has deve-
loped numerous cores with Wishbone connectivity
such as Universal Asychronous Receiver Transmit-
ter (UART), memory controller, Ethernet controller,
timer controller, among others; however the Open-
Cores community has no DSP cores with Wishbone
connectivity. Figure 4 shows a basic Wishbone inter-
connection between a master device and a slave devi-
ce. Here, the master is either the OpenRISC processor
or a bus controller; the slave is any Input/Output (I/O)
device, coprocessor or hardware accelerator. Accor-
ding to the Wisbone specification [8] the signals in
Figure 4 are described in Table 1. The DSP cores pro-
posed in this papers are Wishbone compatible, and
they use the basic connection depicted in Figure 4.
The OpenCores community has developed some refe-
rence SoCs based on the OpenRISC processor which
are FPGA-synthesizable; one of the simplest is Min-
SoC [13], which allows an easy and fast verification
of the OpenRISC-based SoC with custom slave mo-
dules such as the DSP cores we designed.

mDATo[31:0]
mDATi[31:0]

mADRo[31:0]
mSTBo
mWEo
mACKi

mCLKi
mRSTi

sDATi[31:0]
sDATo[31:0]
sADRi[31:0]
sSTBi
sWEi
sACKo

mCLKi
mRSTi

Master Slave
clk

reset

Figure 4: Wishbone bus basic connection.

Signal Description
mDATo/sDATi The data bus from master to

slave (write operations).
mDATi/sDATo The data bus from slave to

master (read operations).
mADRo/sADRi The address bus from master

to slave.
mSTBo/sSTBi The chip select signal from

master to slave. It is set by
master during a write/read
operation.

mWEo/sWEi The write enable signal from
master to slave. It is set by
master during a write opera-
tion.

mACKi/sACKo The acknowledgment signal
from slave to master. It is set
by slave after a successful
write/read operation.

clk The global clock signal.
reset The global active high reset

signal.
Table 1: Signal description of Wishbone bus.

Rev. Invest. Univ. Quindío.(Col.), 25(1): 53-62; 2014

57

Open cores for digital signal processing. Valderrama et al.

DSP CORES ARCHITECTURE

In this section we describe the designed DSP cores
and the slave interfaces with the Wishbone bus. For
all DSP cores we used fixed point arithmetic. Here
the word length, guard bit, fractional part [2], filter
order, and FFT length [1] are parameterizable features
through VHDL generics. Each DSP core is compo-
sed of two functional unit, the processing unit and the
slave interface unit; the processing unit performs the
DSP operation according to the considered core and
the slave interface unit is the Wishbone interface for
the SoC connection.

FIR-filter core

Figure 5 shows the block diagram of a FIR-filter core
parameterized with N=50, word length of M=16 bits,
and a guard bit of G=8 bits. In this case, the proces-
sing unit was designed by using the transpose realiza-
tion form shown in Figure 1. In Figure 5 the uncon-
nected signal ports are Wishbone compatible signals
for OpenRISC-based SoC integration. The remaining
signals are described as follows: The input_signal/
sdat_o pair is the port with the signal to be filtered
and it has a length of M+G bits; the output_signal/
sdat_i pair is the port with the filtered signal and it
has a length of M+G bits; the enable/start pair is the
port that enables the filtering process in the proces-
sing unit; the filter_coef/HQ pair is the port with the

Register Address
FIR_CONTROL[0:0] FIR_BASE + 0
FIR_DATA[M+G-1:0] FIR_BASE + 4
FIR_STATUS[0:0] FIR_BASE + 8
FIR_Q[3:0] FIR_BASE + 12
FIR_COEFF FIR_BASE + 16

FIR_DATA is a read/write register used to write/
read the input/filtered sample. FIR_CONTROL is
a write-only register; when it is set by the user, the
filtering process is started. FIR_STATUS is a read-
only register; it is set when the filtering process fi-
nishes. FIR_Q is a write-only register; in this address
the user writes the number of fractional bits of the
fixed-point representation of the filter coefficients.
From FIR_COEFF starts an addressing space com-
posed of N consecutive 32-bit address positions
where the user can write the 16-bit fixed-point filter
coefficients starting from FIR_COEFF for h[0] and
finishing with FIR_COEFF+4x(N-1) for h[N-1].

IIR-filter core

Figure 6 shows the block diagram of a IIR-filter core
parameterized with Nsect=6, word length of M=16 bits,
a guard bit of G=8 bits, and Q=13 fractional bits. In
this case the processing unit was designed by using a
cascade of Nsect pipelined SOS as the shown in Figure
2. In Figure 6 the unconnected signal ports are Wis-
hbone compatible signals for OpenRISC-based SoC
integration. The remaining signals are described as
follows: The input_signal/sdat_o pair is the port with
the signal to be filtered and it has a length of M+G bits;
the output_signal/sdat_i pair is the port with the filte-
red signal and it has a length of M+G bits; the enable/
start pair is the port that enables the filtering process
in the processing unit; the enable_out/enable_in pair
is the flag that signals the filtering process comple-
tion; the filter_coef/HQ pair is the port with the filter
coefficients and it has a length of 6xNsectxM bits; the
gain/gain pair is the port with the gain Nsect√G for each

DSP CORES ARCHITECTURE

In this section we describe the designed DSP cores
and the slave interfaces with the Wishbone bus. For
all DSP cores we used fixed point arithmetic. Here
the word length, guard bit, fractional part [2], filter
order, and FFT length [1] are parameterizable features
through VHDL generics. Each DSP core is compo-
sed of two functional unit, the processing unit and the
slave interface unit; the processing unit performs the
DSP operation according to the considered core and
the slave interface unit is the Wishbone interface for
the SoC connection.

FIR-filter core

Figure 5 shows the block diagram of a FIR-filter core
parameterized with N=50, word length of M=16 bits,
and a guard bit of G=8 bits. In this case, the processing
unit was designed by using the transpose realization

filter coefficients and it has a length of NxM bits; the
Q/Q pair is the port with the number of fractional bits
in the fixed-point representation of the filter coeffi-
cients and it has a length of 4 bits. Table 2 shows the
register description of the Wishbone interface for the
FIR-filter core.

Table 2: Register description of the FIR-filter core.

Rev. Invest. Univ. Quindío. (Col.), 25(1): 53-62; 2014

58

Revista de Investigaciones - Universidad del Quindío

SOS and it has a length of M bits; the en_out/en_out
pair is the port with the number of used sections min-
us one from the N_sect available sections, and it has
a width of 4 bits. In this case, Q fractional bits are
used for the fixed-point representation of the filter
coefficients and the gain. Table 3 shows the register
description of the Wishbone interface for the IIR-filter
core. IIR_DATA is a read/write register used to wri-
te/read the input/filtered sample. IIR_CONTROL is a
write-only register; when it is set by the user, the fil-
tering process is started. IIR_STATUS is a write/read
register; it is set when the filtering process finishes,
and it is cleared with a write operation. IIR_NSECT
is a write-only register; in this address, the user writes
the number of used sections minus one from the Nsect
available sections; IIR_GAIN is a write-only regis-
ter; in this address, the user writes the gain Nsect√G for
each SOS by using fixed-point representation with Q
fractional bits. From IIR_COEFF starts an addres-
sing space composed of 6xNsect consecutive 32-bit
address positions where the user can write the 16-bit
fixed-point SOS coefficients starting from IIR_CO-
EFF for a2-1

st SOS section, IIR_COEFF + 4 for a1-1
st

SOS section, IIR_COEFF + 8 for a0-1
st SOS section,

IIR_COEFF + 12 for b2-1
st SOS section, IIR_COEFF

+ 16 for b1-1
st SOS section, and IIR_COEFF + 20 for

b0-1
st SOS section; and finishing with IIR_COEFF +

4x(6xNsect-6) for a2-Nsectst SOS section, IIR_COEFF
+ 4x(6xNsect-5) for a1-Nsectst SOS section, IIR_CO-
EFF + 4x(6xNsect-4) for a0-Nsectst SOS section,

FIR Filter Processing Unit

clk
enable
reset

input_signal[23:0]

Q[3:0]
filter_coeff[799:0]

clk

FIR Filter Slave Interface

reset
stb_i
we_i
dat_i[31:0]

adr[31:0]
sdat_i[23:0]

start
ack_o
Q[3:0]

dat_o[31:0]
sdat_o[23:0]

HQ[799:0]

output_signal[23:0]

IIR_COEFF + 4x(6xNsect-3) for b2-Nsectst SOS
section, IIR_COEFF + 4x(6xNsect-2) for b1-Nsectst
SOS section, and IIR_COEFF + 4x(6xNsect-1) for
b0-Nsectst SOS section.

Figure 5: FIR-filter core.

Register Address
IIR_CONTROL[0:0] IIR_BASE + 0
IIR_DATA[M+G:0] IIR_BASE + 4
IIR_STATUS[0:0] IIR_BASE + 8
IIR_NSECT[3:0] IIR_BASE + 12
IIR_GAIN[15:0] IIR_BASE + 16
IIR_COEFF IIR_BASE + 20

Table 3: Register description of the IIR-filter core.

IIR Filter Processing Unit
IIR Filter Processing Unit

clk
enable
reset

input_signal[15:0]

gain[15:0]
filter_coeff[575:0] enable_out

clk
IIR Filter Slave Interface

reset
stb_i
we_i
dat_i[31:0]

adr[31:0]

sdat_i[23:0]

start
ack_o

gain[15:0]
dat_o[31:0]

sdat_o[23:0]
HQ[575:0]

output_signal[23:0]

en_out[3:0]

enable_in
en_out[3:0]

Figure 6: IIR-filter core.

FFT core

Figure 7 shows the block diagram of an FFT core pa-
rameterized with N=1024, word length of M=16 bits,
and Q=15 fractional bits. In this case, the processing
unit was designed by using the pipelined version of
the R22SDF architecture developed in [11]. In Figure
7, the unconnected signal ports are Wishbone com-
patible signals for OpenRISC-based SoC integration.

Rev. Invest. Univ. Quindío.(Col.), 25(1): 53-62; 2014

59

Open cores for digital signal processing. Valderrama et al.

The remaining signals are described as follows: The
Xinr/dat[15:0] pair is the port with the real part of
the input sample and it has a length of M bits; Xini/
dat[31:16] pair is the port with the imaginary part of
the input sample and it has a length of M bits; the
enable/fft_enable pair is the port that enables the FFT
computing for each input sample in the processing
unit; the Xoutr/sdat_i[15:0] pair is the port with the
real part of the output sample and it has a length of
M bits; Xouti/sdat_i[31:16] pair is the port with the
imaginary part of the output sample and it has a length
of M bits; the enable_out/fft_enable_in pair is the flag
that signals the FFT process completion for each input
sample; the frame_ready/fft_finish pair is the flag that
signals the whole FFT process completion; the index/
adr_fft pair

FFT core

Figure 7 shows the block diagram of an FFT core pa-
rameterized with N=1024, word length of M=16 bits,
and Q=15 fractional bits. In this case, the processing
unit was designed by using the pipelined version of
the R22SDF architecture developed in [11]. In Figure
7, the unconnected signal ports are Wishbone com-
patible signals for OpenRISC-based SoC integration.
The remaining signals are described as follows: The
Xinr/dat[15:0] pair is the port with the real part of
the input sample and it has a length of M bits; Xini/
dat[31:16] pair is the port with the imaginary part of
the input sample and it has a length of M bits; the
enable/fft_enable pair is the port that enables the FFT
computing for each input sample in the processing
unit; the Xoutr/sdat_i[15:0] pair is the port with the
real part of the output sample and it has a length of
M bits; Xouti/sdat_i[31:16] pair is the port with the
imaginary part of the output sample and it has a leng-
th of M bits; the enable_out/fft_enable_in pair is the
flag that signals the FFT process completion for each
input sample; the frame_ready/fft_finish pair is the
flag that signals the whole FFT process completion;
the index/adr_fft pair is the bit-reversed address [1]
[2] in On-chip RAM where the processed sample is
written. Table 4 shows the register description of the
Wishbone interface for the FFT core. FFT_DATA is
a write-only register used to write the input samples.
FFT_CONTROL is a write-only register; when it is
written by the user the processing unit and the sta-
tus register are cleared; FFT_STATUS is a read-only
register; it is set when the whole FFT process finis-

hes. From FFT_MEMORY starts an addressing space
composed of N consecutive 32-bit address positions
where the user can read the FFT results starting from
FFT_MEMORY for X[0] and finishing with FFT_
MEMORY + 4x(N-1) for X[N-1].

FFT Processing Unit
clk

enable
reset

Xinr[15:0]
Xini[15:0] enable_out

clk FFT Slave Interfacereset
stb_i
we_i
dat_i[31:0]

adr[31:0]

sdat_i[31:0]

clear_out
ack_o

fft_enable
dat_o[31:0]

dat[31:0]

Xoutr[15:0]

fft_enable_in

frame_ready

Xouti[15:0]
index[9:0]

adr_fft[9:0]

clear

fft_finish

Figure 7: IIR-filter core.

Register Address
FFT_CONTROL[0:0] FFT_BASE + 0
FFT_DATA[31:0] FFT_BASE + 4
FFT_STATUS[0:0] FFT_BASE + 8
FFT_MEMORY FFT_BASE + 12

Table 4: Register description of the FFT core.

Rev. Invest. Univ. Quindío. (Col.), 25(1): 53-62; 2014

60

Revista de Investigaciones - Universidad del Quindío

dotted line. In this case, the MSE is Ta-
ble 5 shows the synthesis report for the FIR-filter co
re.

IN-SYSTEM HARDWARE VERIFICATION

The three DSP cores were integrated into an Open-
RISC-based SoC built from the reference design
MinSoC [13]. The SoC was synthesized on the Altera
FPGA device EP2S60F1020C4 included in the deve-
lopment board TREX-S2-TMB [14]. The accuracy of
the cores was measured in terms of the Mean Squared
Error (MSE) between frequency responses in DFT
domain as shown in Eq. (4)

Here X[k] is the frequency response in the DFT do-
main when it is computed by simulation using double
precision floating point arithmetic, and X ̃[k] is the
frequency response of the core in DFT domain.
In the case of the FIR-filter core, we designed a 49-th
order equiripple low-pass filter with cutoff frequen-
cies 3/8π rad/s and π/2 rad/s. The core is parameteri-
zed with a 16-bit word length, a 15-bit fractional part,
and a guard bit of 8 bits. Figure 8 shows the magnitu-
de frequency responses for the tested FIR-filter core.

Figure 8: Frequency response of the FIR-filter core.

In Figure 8, the continuous line depicts the magni-
tude frequency response of the FIR filter when it is
computed by simulation using double-precision floa-
ting-point arithmetic. The frequency response of the
FIR-filter core was computed by getting the impulse
response and taking its DFT, this is depicted with the

Parameter Value
Logic utilization 27 %
Combinational ALUTs 11,598 / 48,352 (24 %)
Dedicated logic registers 1,947 / 48,352 (4 %)
Total block memory bits 0 / 2,544,192 (0 %)
DSP block 9-bit elements 100 / 288 (35 %)
Maximum operating frequen-
cy

103.92 MHz

Table 5: Synthesis report for the FIR core with N=50.

The FIR-filter core requires the 27% of the resources
and reaches up a maximum operating frequency of
103.92 MHz.
In the case of the IIR-filter core, we designed a 12-
th order Butterworth band-pass filter with cutoff fre-
quencies 0.10625 rad/s, 0.11875 rad/s, 0.1025 rad/s,
and 0.1225 rad/s. The core was parameterized with 6
SOS sections, a word length of 16 bit, a fractional part
of 13 bits, and a guard bit of 8 bits. Figure 9 shows
the magnitude frequency responses for the tested IIR-
filter core.

Figure 9: Frequency response of the IIR-filter core.

In Figure 9, the continuous line depicts the magni-
tude frequency response of the IIR filter when it is
computed by simulation using double-precision floa-
ting-point arithmetic. The frequency response of the
IIR-filter core was computed by getting the impulse
response and taking its DFT, this is depicted with the
dotted line. In this case, the MSE is .

Rev. Invest. Univ. Quindío.(Col.), 25(1): 53-62; 2014

61

Parameter Value
Logic utilization 5 %
Combinational ALUTs 2,201 / 48,352 (5 %)
Dedicated logic registers 504 / 48,352 (1 %)
Total block memory bits 0 / 2,544,192 (0 %)
DSP block 9-bit elements 288 / 288 (100 %)
Maximum operating
frequency

85.81 MHz

Table 6 shows the synthesis report for the IIR-filter
core.

The IIR-filter core requires the 5% of the resources
and reaches up a maximum operating frequency of
85.81 MHz.
The FFT core was parameterized with 1024 points, a
word length of 16 bit, a fractional part of 15 bits, and
a total gain of . Figure 10 shows the frequency
responses for the tested FFT core.

Figure 10: Frequency response of the FFT core.

In this case, we computed the FFT for the signal

. In Figure 10 the continuous line depicts the FFT
computed by simulation using double-precision
floating-point arithmetic; the dootted line depicts
the FFT computed by the core. In this case, the
MSE is .

Parameter Value
Logic utilization 69 %
Combinational ALUTs 1,085 / 48,352 (2 %)
Dedicated logic registers 33,095 / 48,352 (68 %)
Total block memory bits 73,728 / 2,544,192 (3 %)
DSP block 9-bit elements 32 / 288 (11 %)
Maximum operating
frequency

115.3 MHz

Table 7 shows the synthesis report for the FFT core.

Table 7: Synthesis report for the FFT core with
N=1024.

The FFT core requires the 69% of the resources and
reaches up a maximum operating frequency of 115.3
MHz.

Parameter Value
Logic utilization 100 %
Combinational ALUTs 33,568 / 48,352 (69 %)
Dedicated logic registers 39,428 / 48,352 (82 %)
Total block memory bits 494,464 / 2,544,192 (19

%)
DSP block 9-bit elements 288 / 288 (100 %)

Maximum operating
frequency

55.05 MHz

Table 8: Synthesis report for the OpenRISC-MinSoC-
based DSP SoC.

In this case, the OpenRISC-based DSP SoC requires
the 100% of the resources and reaches up a maximum
operating frequency of 55.05 MHz. The constraint in
operating frequency is due to the MinSoC SoC and
not the DSP Cores.

CONCLUSION

We designed DSP Cores FIR filter, IIR filter, FFT,
which are compatible with the Wishbone bus. The-
se cores allow the construction of DSP SoC systems
based on the OpenRISC processor. These three DSP
cores are parameterizable through VHDL generics
and they have easy-to-use hardware/software interfa-
ces. The three DSP cores we designed are the only of
their kind in the OpenCores community because of
the broad DSP functions availability, the Wishbone
compatibility, the flexibility, and speed performance.
The three cores have been tested on Altera FPGA de-
vices Cyclone II and Stratix II.

Rev. Invest. Univ. Quindío. (Col.), 25(1): 53-62; 2014

Open cores for digital signal processing. Valderrama et al.

62

Revista de Investigaciones - Universidad del Quindío

ACKNOWLEDGEMENTS

Juan Camilo Valderrama-Cuervo thanks Prof. López-Parrado for the given support and teachings.
Alexander López-Parrado thanks Colciencias for the scholarship, and he also thanks Universidad
del Quindío for the study commission.

REFERENCES
1. Sanjit K. Mitra. "Digital Signal Processing: A Computer-Based Approach," 4th edition, Mc-

Graw-Hill, 2010.Meyer-Baese, Uwe. (2005). Fourier Transform.
2. Uwe. Meyer-Baese , Digital Signal Processing with Field programmable Gate Array (págs.

343-391). USA: Springer.
3. Altera Corporation. FIR Compiler. 2011. http://www.altera.com/literature/ug/fircompiler_

ug.pdf
4. Xilinx Corporation. FIR Compiler. 2011. http://www.xilinx.com/products/intellectual-pro-

perty/FIR_Compiler.htm
5. Altera Corporation. FFT MegaCore Function. 2011. http://www.altera.com/literature/ug/ug_

fft.pdf
6. Xilinx Corporation. Fast Fourier Transform (FFT). 2011. http://www.xilinx.com/products/

intellectual-property/FFT.htm
7. OpenCores. OpenRISC 1000 Architecture Manual. 2012. http://opencores.org/

websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-
arch-1.0-rev0.pdf

8. OpenCores. Wishbone Revision B.3 Specification. 2011. http://cdn.opencores.org/down-
loads/wbspec_b3.pdf

9. A. López-Parrado, J. C. Valderrama-Cuervo. WDSP Project. 2013. http://opencores.org/
project,wdsp.

10. S. He and M. Torkelson. A New Approach to Pipeline FFT Processor. Proceedings of IPPS
‘96 the 10th International Parallel Processing Symposium. Honolulu, USA. 1996. pp.
766-770.

11. A. López-Parrado, J. Velasco-Medina, J. A. Ramírez-Gutiérrez. Efficient hardware im ple-
mentation of a full COFDM processor with robust channel equalization and reduced power
consumption. Revista de la Facultad de Ingeniería de la Universidad de Antioquia. N.° 68 pp.
48-60. 2013.

12. OpenCores. OR1200 Project. 2012. http://opencores.org/or1k/Main_Page.
13. Raul Fajardo et. al. MINSOC Project. 2013. http://opencores.org/project,minsoc.
14. Terasic Tehcnologies. TREX-S2-TMB Motherboard for Stratix II FPGA Module Data Book.

2006. http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No
=189&FID=d27fe61e50f8d9c5c7d0278b78c8f4fd.

Rev. Invest. Univ. Quindío.(Col.), 25(1): 53-62; 2014

